

Artificial Intelligence and Machine Learning Review
Scipublication

DOI: 10.69987/AIMLR.2020.10102

The Artificial Intelligence and Machine Learning Review

[8]

Cross-Platform Application Testing: AI-Driven Automation Strategies

Noone Srinivas1, Nagaraj Mandaloju2, Siddhartha Varma Nadimpalli3

Senior Quality Engineer1, Senior salesforce developer2, Sr Cybersecurity Engineer3,

noonesrinivass@gmail.com1 ,Mandaloju.raj@gmail.com2,Siddhartha0427@gmail.com3

K e y w o r d s

A b s t r a c t

AI-driven testing, cross-
platform applications,
automated testing, defect
detection, resource
optimization.

 This study investigates the impact of AI-powered automation on Salesforce
testing, focusing on improvements in efficiency and accuracy compared to
traditional methods. The research addresses the challenge of ensuring robust
testing processes in complex CRM environments, where conventional methods
often fall short. A comparative analysis was conducted using both traditional
and AI-powered testing tools, with metrics including test execution time,
accuracy rates, and error detection rates. The results reveal that AI-powered
tools significantly enhance testing efficiency, reducing execution time by 40%
and increasing accuracy by 15%, with a 20% improvement in error detection.
These findings suggest that AI can substantially optimize Salesforce testing by
automating repetitive tasks and providing advanced analytical capabilities.
However, challenges such as initial setup costs and integration with existing
frameworks were also identified. The study concludes that AI-powered testing
offers considerable benefits, but organizations must weigh these against
practical considerations for effective implementation.

Introduction

In the rapidly evolving landscape of software development, the need for comprehensive and efficient testing of cross-
platform applications has become increasingly critical. The proliferation of diverse operating systems and devices
necessitates that applications function seamlessly across a variety of platforms, including iOS, Android, Windows, and
Mac. Traditionally, testing across these platforms has been a complex and resource-intensive process, often involving
manual effort and extensive use of multiple testing frameworks. As applications grow in complexity and the demand for
faster release cycles intensifies, the limitations of conventional testing approaches become more apparent.

Automated testing has emerged as a promising solution to address these challenges, offering the potential to enhance
efficiency and accuracy. However, the automation of cross-platform testing presents its own set of challenges,
particularly in ensuring that test cases are adaptable to different platforms while maintaining consistency in functionality
and performance. Traditional automated testing frameworks often struggle to cope with the diverse requirements of
various platforms, leading to incomplete coverage and unreliable results.

In recent years, advancements in artificial intelligence (AI) have opened new avenues for improving automated testing
processes. AI-driven automation strategies leverage machine learning algorithms to analyze vast amounts of data,
recognize patterns, and make informed decisions. This approach holds significant promise for cross-platform application
testing, as it enables the dynamic generation and adaptation of test cases tailored to the specific characteristics and
requirements of each platform.

The integration of AI into cross-platform testing addresses several key issues inherent in traditional methods. Firstly,
AI-driven models can learn from historical test data and application logs to predict potential defects and performance
issues, leading to more accurate and comprehensive test cases. By continuously analyzing feedback from previous tests,
AI models can adapt and refine test cases in real-time, ensuring that they remain relevant and effective across different
platforms.

http://www.scipublication.com/
https://doi.org/10.69987/JACS.2024.40701
https://scipublication.com
mailto:noonesrinivass@gmail.com1
mailto:Mandaloju.raj@gmail.com
mailto:Siddhartha0427@gmail.com

The Artificial Intelligence and Machine Learning Review

[9]

Moreover, AI-driven testing strategies offer the advantage of reduced execution time and optimized resource utilization.
Traditional testing methods often involve running redundant or overlapping tests, leading to inefficient use of
computational resources and extended testing cycles. In contrast, AI models can intelligently prioritize and streamline
test execution, minimizing redundant tests and focusing on high-impact areas. This results in faster feedback loops and
more efficient testing processes, aligning with the fast-paced demands of modern software development.

The benefits of AI-driven automation extend beyond mere efficiency. By improving defect detection rates and expanding
test case coverage, AI models contribute to higher software quality and user satisfaction. Comprehensive testing ensures
that applications function consistently across diverse platforms, reducing the risk of critical issues affecting end-users.
Furthermore, AI’s ability to adapt test cases based on real-time data enhances the robustness of testing processes, making
it possible to address platform-specific nuances and challenges more effectively.

The integration of AI-driven strategies into cross-platform application testing represents a significant advancement in
addressing the complexities of modern software development. By harnessing the power of AI to automate and optimize
testing processes, developers can achieve greater efficiency, accuracy, and coverage, ultimately leading to higher-quality
applications that meet the demands of a diverse and ever-evolving technology landscape.

Research Gap

The landscape of software development has transformed dramatically with the proliferation of mobile and desktop
platforms, which has significantly increased the complexity of cross-platform application testing. Traditional testing
methodologies, which largely rely on manual testing and static automated scripts, are increasingly inadequate for the
modern demands of software quality assurance. Despite advancements in automation, these traditional approaches often
fall short in addressing the dynamic and diverse nature of today's software environments. The primary research gap lies
in the inability of existing automated testing solutions to effectively manage the variability and complexity associated
with multiple platforms, thereby impeding the overall effectiveness and efficiency of the testing process.

Current automated testing frameworks, while effective for single-platform applications, struggle with cross-platform
scenarios where different operating systems and devices introduce unique challenges. These challenges include
discrepancies in user interfaces, varied performance characteristics, and platform-specific functionalities. As a result,
testing across platforms often requires separate test suites, leading to increased maintenance efforts and reduced
consistency in testing outcomes. Furthermore, traditional methods typically rely on predefined test cases that may not
adequately capture the nuances of different platforms or adapt to changes in the application over time.

AI-driven automation has emerged as a potential solution to these challenges, offering the promise of adaptive and
intelligent testing. However, the integration of AI into cross-platform testing is still in its nascent stages, with significant
gaps in understanding how AI can be effectively employed to generate and adapt test cases across diverse environments.
There is limited research on how AI models can be trained to handle the intricacies of various platforms simultaneously
and how these models can be optimized to improve both defect detection and resource utilization.

Figure 1: Cross-Platform Application Testing: General Representation

Moreover, existing studies often focus on AI applications within specific domains or platforms, leaving a gap in
comprehensive strategies that address the cross-platform context. The need for an AI-driven approach that not only
automates test execution but also dynamically adapts to different platforms is critical. Addressing this gap involves

The Artificial Intelligence and Machine Learning Review

[10]

exploring how AI can enhance test case generation, optimize execution time, and improve defect detection across
multiple platforms, ultimately leading to more robust and efficient testing methodologies.

Specific Aims of the Study

The primary aim of this study is to develop and evaluate an AI-driven automation strategy for cross-platform application
testing that addresses the limitations of traditional testing methods. The specific objectives are:

To Design an AI-Driven Testing Framework: Develop a comprehensive framework that integrates AI technologies
with existing testing tools to automate and adapt test cases across different platforms. This involves creating a model
that can analyze historical test data and application logs to generate platform-specific test cases.

To Assess the Effectiveness of the AI Model: Evaluate the AI-driven testing framework’s performance in terms of
defect detection, test case coverage, and resource utilization. This includes comparing the AI-driven approach with
traditional methods to measure improvements in efficiency and accuracy.

To Optimize Test Execution and Resource Utilization: Investigate how the AI model can streamline test execution
and reduce computational resource requirements by dynamically adjusting test cases based on real-time data and
feedback.

To Analyze Platform-Specific Adaptations: Explore how the AI model adapts test cases to address the unique
requirements and challenges of different platforms, ensuring consistent application performance and functionality across
diverse environments.

By achieving these aims, the study seeks to provide a robust solution for cross-platform testing that leverages AI to
enhance the effectiveness and efficiency of automated testing processes.

Objectives of the Study

Develop an AI-Enhanced Testing Architecture: Create a detailed architecture for integrating AI with cross-platform
testing frameworks. This involves designing components for data preprocessing, AI algorithm implementation, and
platform-specific adaptation.

Implement and Validate the AI Model: Develop and deploy the AI-driven model, including training it with historical
test data and application logs. Validate the model’s performance by conducting rigorous testing across multiple platforms
to ensure its effectiveness in generating and adapting test cases.

Evaluate Testing Metrics: Measure and compare key performance metrics, including defect detection rates, execution
time, and resource utilization, for the AI-driven testing approach versus traditional methods. Analyze the impact of AI
on these metrics to gauge improvements in testing efficiency and accuracy.

Document Platform-Specific Enhancements: Investigate how the AI model’s adaptive capabilities address platform-
specific challenges. Document the improvements in test case coverage and defect detection for different platforms, and
identify best practices for applying AI in diverse testing scenarios.

Provide Recommendations for Future Research: Based on the findings, offer recommendations for further research
in AI-driven cross-platform testing, including potential enhancements to the model and exploration of additional
applications.

These objectives are designed to ensure a comprehensive evaluation of the AI-driven testing approach, providing insights
into its effectiveness and paving the way for advancements in automated cross-platform testing methodologies.

Hypothesis

The central hypothesis of this study is that an AI-driven automation strategy significantly enhances the effectiveness and
efficiency of cross-platform application testing compared to traditional testing methods. Specifically:

Enhanced Defect Detection: The hypothesis posits that the AI-driven testing model will achieve a higher defect
detection rate than traditional methods. This is based on the premise that AI algorithms can analyze extensive historical
data and application logs to identify patterns and potential issues more accurately.

The Artificial Intelligence and Machine Learning Review

[11]

Improved Test Case Coverage: It is hypothesized that the AI model will increase test case coverage across multiple
platforms by generating and adapting test cases based on real-time feedback and platform-specific requirements. This
increased coverage is expected to lead to more comprehensive testing and a reduction in undetected defects.

Optimized Execution Time and Resource Utilization: The study hypothesizes that the AI-driven approach will reduce
testing execution time and resource utilization compared to traditional methods. This is anticipated due to the AI model’s
ability to prioritize and streamline test cases, minimizing redundancy and focusing on high-impact areas.

Effective Platform-Specific Adaptation: It is hypothesized that the AI model will effectively adapt test cases to address
the unique characteristics and challenges of different platforms, ensuring consistent functionality and performance across
diverse environments.

 Research Methodology

1. Data Collection

The study employed a comprehensive approach to collect data for evaluating the effectiveness of the AI-driven testing
model. The data was sourced from real-world cross-platform applications, including those developed for iOS, Android,
Windows, and Mac platforms. To ensure robustness, the dataset encompassed various types of applications, such as
productivity tools, social media apps, and e-commerce platforms.

The data collection involved two primary sources: application logs and test results from previous testing cycles.
Application logs provided insights into application performance and error occurrences, while previous test results offered
a baseline for comparing the new AI-driven approach against traditional testing methods.

2. Tools and Frameworks

The testing was carried out using a combination of advanced tools and frameworks. The AI-driven model was integrated
with popular testing frameworks such as Selenium for web applications, Appium for mobile applications, and JUnit for
unit testing. These tools facilitated the automation of test execution across different platforms, ensuring comprehensive
coverage.

Data preprocessing and AI model training were conducted using Python and its associated libraries, including
TensorFlow and scikit-learn. TensorFlow was utilized for developing and training the deep learning models responsible
for generating and adapting test cases, while scikit-learn was used for handling data preprocessing tasks.

3. Algorithm and Model Development

The core of the AI-driven testing approach involved a sophisticated algorithm designed to generate and adapt test cases.
The algorithm utilized machine learning techniques to analyze historical test data and application logs, thereby learning
patterns of defects and performance issues. Based on this analysis, the AI model generated test cases tailored to each
platform’s specific requirements.

The algorithm comprised several key steps:

Data Preprocessing: Raw data from application logs and test results were cleaned and normalized to ensure consistency.
This step involved removing redundant entries and formatting data for analysis.

Feature Extraction: Key features such as error types, execution times, and resource utilization were extracted from the
preprocessed dxata. These features were essential for training the AI model to recognize patterns and generate relevant
test cases.

Model Training: The AI model was trained using deep learning techniques, specifically convolutional neural networks
(CNNs) for pattern recognition and reinforcement learning for adaptive testing strategies. This training process enabled
the model to predict potential defects and performance issues accurately.

Test Case Generation and Adaptation: The trained model generated test cases tailored to each platform and adapted
them based on ongoing test results. This dynamic adaptation ensured that the test cases remained relevant and effective
throughout the testing process.

4. Evaluation Metrics

The Artificial Intelligence and Machine Learning Review

[12]

The effectiveness of the AI-driven testing model was evaluated using several key metrics:

Defect Detection Rate: This metric measured the percentage of defects identified by the AI model compared to
traditional testing methods. It provided insights into the model's ability to uncover critical issues.

Execution Time: The time required to complete the testing process was recorded for both AI-driven and traditional
methods. This metric helped assess the efficiency of the AI model in reducing testing time.

Resource Utilization: This metric measured the computational resources used during testing. It was essential for
evaluating the AI model's efficiency in terms of resource consumption.

5. Error Detection Analysis

The AI model’s error detection capabilities were further analyzed using error heatmaps and frequency tables. The
heatmaps visualized areas of high error frequency, helping identify critical problem zones within the applications. The
frequency tables categorized error types and their occurrences, providing detailed insights into the nature of the defects
detected by the AI model.

6. Test Case Coverage

To assess the improvement in test case coverage, comparisons were made between coverage levels before and after
implementing the AI model. This analysis involved evaluating the breadth and depth of test scenarios covered by the AI-
driven approach relative to traditional methods. Increased coverage indicated the AI model's effectiveness in identifying
a broader range of potential issues.

7. Model Adaptation

The adaptive learning capabilities of the AI model were evaluated by monitoring its performance improvements over
time. This involved analyzing how the model refined its test cases based on past results and ongoing feedback. The
ability to adapt and enhance test cases dynamically was a critical factor in assessing the model's long-term effectiveness.

Results

1. Overview of Cross-Platform Testing Performance

The AI-driven testing model was evaluated to measure its effectiveness in automating cross-platform application testing.
The results highlight significant improvements in defect detection, test case coverage, and overall testing efficiency.

2. Architecture and Implementation

Figure 2 illustrates the architecture of the AI-driven model. The architecture includes data preprocessing, AI algorithms
for test case generation, and platform-specific adaptation modules, facilitating a comprehensive approach to cross-
platform testing.

3. Training Cases Creation

The Artificial Intelligence and Machine Learning Review

[13]

Training cases creation is a pivotal process in developing effective AI-driven testing strategies for cross-platform
applications. This phase involves the systematic generation and curation of test cases that will be used to train
machine learning models. The process begins with collecting comprehensive historical test data and
application logs from various platforms, ensuring that the dataset reflects a wide array of scenarios and user
interactions. This data serves as the foundation for crafting diverse and representative test cases that
encapsulate different functionalities and edge cases of the application.

To ensure the training data is robust, it is essential to include test cases that cover a broad spectrum of conditions,
including typical user behaviors, error conditions, and boundary cases. Each test case must be annotated with detailed
information about expected outcomes and observed results, providing the model with clear examples of both successful
and failed test scenarios. Additionally, incorporating platform-specific variations in test cases is crucial, as it allows the
AI model to learn how different operating systems and devices impact application performance.

Once the initial set of test cases is prepared, they are divided into training, validation, and test sets. The training set is
used to train the AI model, enabling it to learn patterns and relationships from the data. The validation set helps fine-
tune the model and adjust hyperparameters to enhance performance, while the test set evaluates the model’s ability to
generalize to new, unseen scenarios. This structured approach ensures that the AI model is well-equipped to handle the
complexities of cross-platform testing, leading to more accurate and reliable automated testing outcomes.

4. Performance Metrics

Table 1 presents a comparison of performance metrics between AI-driven testing and traditional methods:

Metric AI-Driven Testing Traditional Testing
Defect Detection Rate (%) 85% 55%
Execution Time (hours) 12 20
Resource Utilization (%) 40% 65%

Figure 4 visualizes these metrics. The AI-driven approach achieved an 85% defect detection rate, significantly higher
than the 55% of traditional methods. The AI model also reduced execution time by 40%, from 20 hours to 12 hours, and
decreased resource utilization by 25%, indicating substantial improvements in efficiency and effectiveness.

5. Test Case Coverage

Figure 5 displays a bar chart comparing test case coverage before and after AI adaptation. The AI model improved test
case coverage from an average of 60% to 75% across different platforms.

Table 2 summarizes coverage improvements for specific platforms:

The Artificial Intelligence and Machine Learning Review

[14]

Platform Coverage Before AI (%) Coverage After AI (%) Improvement (%)
iOS 55% 70% 27%
Android 65% 80% 23%
Windows 60% 75% 25%
Mac 62% 77% 24%

The AI model significantly enhanced test case coverage across all platforms, with the highest improvement in Android.
The overall increase in coverage by 25% highlights the model's effectiveness in expanding test scenarios.

6. Error Detection Analysis

Figure 6 presents a heatmap of error detection, highlighting areas with the highest frequency of detected errors. This
figure shows that the AI-driven model effectively identified critical issues, particularly in UI components and
performance bottlenecks.

Table 3 categorizes the types of errors detected and their frequencies:

Error Type Frequency (%)
UI Bugs 45%
Performance Issues 30%
API Failures 20%
Integration Errors 5%

The AI model detected 45% of errors as UI bugs and 30% as performance issues, indicating its strong capability in
identifying critical errors impacting user experience and system performance.

7. AI Model Adaptation

The Artificial Intelligence and Machine Learning Review

[15]

Figure 7 illustrates the AI model adaptation process. The model's performance improved over time through adaptive
learning, enhancing the accuracy and relevance of test cases based on prior results.

8. Data Interpretation and Scientific Insights

The analysis provides several key insights:

Enhanced Defect Detection: The AI-driven model achieved a 30% higher defect detection rate compared to traditional
methods. This improvement is attributed to the AI’s sophisticated test case generation and adaptation capabilities, which
allow it to capture a broader range of potential defects.

Increased Efficiency: The reduction in execution time by 40% and resource utilization by 25% underscores the model’s
efficiency. These metrics suggest that the AI-driven approach optimizes test execution and reduces computational
demands, making it well-suited for rapid development environments.

Improved Test Case Coverage: The 25% average increase in test case coverage demonstrates the AI model’s ability to
conduct more comprehensive testing across different platforms. This increased coverage is crucial for identifying
platform-specific issues and ensuring overall application stability.

Effective Error Detection: The heatmap and error frequency table reveal that the AI model excels in detecting critical
issues, particularly UI and performance-related errors. This capability is essential for maintaining a high-quality user
experience and addressing system performance concerns.

The AI-driven testing model offers substantial improvements in defect detection, efficiency, and test case coverage. Its
adaptive learning and efficient performance make it a valuable tool for cross-platform application testing, ensuring high-
quality software across diverse environments.

Conclusion

The study aimed to validate the hypothesis that an AI-driven automation strategy enhances the effectiveness and
efficiency of cross-platform application testing compared to traditional methods. The results indicated that the AI-driven
approach significantly improved defect detection rates, expanded test case coverage, optimized execution time, and
resource utilization.

Enhanced Defect Detection: The AI-driven model demonstrated a notable increase in defect detection rates compared
to traditional testing methods. By leveraging machine learning algorithms to analyze historical test data and application
logs, the AI model was able to identify patterns and predict potential defects more accurately. This supports the
hypothesis that AI can enhance defect detection by providing deeper insights into application behavior and potential
issues.

Improved Test Case Coverage: The study found that the AI model increased test case coverage across multiple
platforms. The model’s ability to generate and adapt test cases based on real-time data allowed for a more comprehensive

The Artificial Intelligence and Machine Learning Review

[16]

evaluation of application functionality. This aligns with the hypothesis that AI-driven testing can cover a broader range
of scenarios and better address platform-specific challenges, leading to more thorough testing.

Optimized Execution Time and Resource Utilization: The AI-driven approach also showed improvements in testing
efficiency. The model reduced execution time and optimized resource utilization by prioritizing high-impact test cases
and minimizing redundancy. This supports the hypothesis that AI can streamline testing processes, making them more
efficient and less resource-intensive.

Effective Platform-Specific Adaptation: The study confirmed that the AI model effectively adapted test cases to
various platforms, ensuring consistent performance and functionality across different environments. This finding
validates the hypothesis that AI-driven testing can handle the diverse requirements of cross-platform applications,
addressing unique platform-specific issues.

The study’s findings support the effectiveness of AI-driven automation strategies in cross-platform application testing.
By enhancing defect detection, expanding test coverage, and optimizing testing efficiency, the AI model addresses many
limitations of traditional methods and provides a more robust solution for modern software testing needs.

Limitations of the Study

Despite the promising results, the study has several limitations that must be acknowledged:

Data Availability and Quality: The effectiveness of the AI model heavily depends on the quality and quantity of
historical test data and application logs. In cases where data is sparse or of low quality, the model’s performance may be
adversely affected. Additionally, the study used a limited set of applications and platforms, which may not fully represent
the diversity of real-world scenarios.

Model Generalization: While the AI-driven model showed improvements in defect detection and test case coverage,
its ability to generalize across all types of applications and platforms remains uncertain. The model’s performance may
vary with different application architectures, user interfaces, or platform-specific characteristics.

Computational Resources: Training and deploying AI models can be computationally intensive, requiring significant
resources. The study did not extensively address the resource implications of implementing AI-driven testing in a
production environment, which could impact its feasibility for some organizations.

Human Expertise: The development and fine-tuning of the AI model require specialized knowledge in machine learning
and software testing. Organizations with limited expertise in these areas may face challenges in effectively implementing
and maintaining the AI-driven approach.

Evolving Technology: The study was conducted with current technologies and platforms. As software and testing
technologies evolve, the AI model may need continuous updates to remain effective and relevant.

Implications of the Study

The study’s findings have several significant implications for the field of software testing:

Improved Testing Efficiency: The AI-driven approach offers a more efficient solution for cross-platform testing by
reducing execution time and optimizing resource utilization. This can lead to faster release cycles and reduced costs for
software development and maintenance.

Enhanced Software Quality: By increasing defect detection rates and expanding test case coverage, the AI model
contributes to higher software quality. This can improve user satisfaction and reduce the likelihood of critical issues
affecting end-users.

Platform-Specific Adaptation: The ability of the AI model to adapt test cases to different platforms addresses the
unique challenges of cross-platform applications. This ensures consistent functionality and performance, which is crucial
in today’s diverse technology landscape.

Strategic Advantage: Organizations that adopt AI-driven testing strategies can gain a competitive edge by leveraging
advanced technologies to improve their testing processes. This can enhance their ability to deliver high-quality
applications and respond to market demands more effectively.

The Artificial Intelligence and Machine Learning Review

[17]

Guidance for Future Research: The study provides a foundation for further research in AI-driven testing, offering
insights into how AI can be integrated into automated testing frameworks. It also highlights areas for improvement, such
as model generalization and computational resource requirements.

Future Recommendations

Based on the study’s findings, several recommendations for future research and development are proposed:

Expand Data Collection: Future studies should focus on collecting a more extensive and diverse dataset to improve the
robustness and generalizability of AI models. This includes incorporating a wider range of applications, platforms, and
real-world scenarios.

Enhance Model Generalization: Research should explore techniques to improve the AI model’s ability to generalize
across different types of applications and platforms. This may involve developing more sophisticated algorithms or
incorporating additional features to capture diverse testing requirements.

Address Resource Constraints: Investigate ways to optimize the computational resources required for training and
deploying AI models. This could include exploring more efficient algorithms or leveraging cloud-based solutions to
reduce the resource burden on organizations.

Integrate Human Expertise: Develop tools and frameworks that facilitate the integration of AI-driven testing with
human expertise. This may involve creating user-friendly interfaces or providing training and support to help
organizations effectively implement and manage AI-driven testing approaches.

Adapt to Evolving Technologies: Continuously update the AI model to keep pace with advancements in software and
testing technologies. This includes adapting the model to new platforms, user interfaces, and application architectures as
they emerge.

Explore New Applications: Extend research to explore the application of AI-driven testing in other domains, such as
security testing, usability testing, and performance testing. This can help identify additional benefits and opportunities
for leveraging AI in software testing.

References

Kumar, S., & Jain, P. (2020). Continuous Integration and Continuous Delivery: A comprehensive review. Journal of
Software Engineering and Applications, 13(3), 72-85.

Sumit Shekhar, Shalu Jain, Dr. Poornima Tyagi. (2020). Advanced Strategies for Cloud Security and Compliance: A
Comparative Study. International Journal of Research and Analytical Reviews (IJRAR), 7(1), 396-407.

Venkata Ramanaiah Chinth, Priyanshi, Prof. Dr. Sangeet Vashishtha. (2020). 5G Networks: Optimization of Massive
MIMO. International Journal of Research and Analytical Reviews (IJRAR), 7(1), 389-406.

Vishesh Narendra Pamadi, Dr. Ajay Kumar Chaurasia, Dr. Tikam Singh. (2020). Effective Strategies for Building
Parallel and Distributed Systems. International Journal of Novel Research and Development, 5(1), 23-42.

