Artificial Intelligence and Machine Learning Review {}
Scipublication v
DOL: 10.69987/AIMLR 2021.20302

o mmp SCIPUBLICATION

Al-Driven Predictive Analytics for Software Quality Improvement
Vinod Sharma’, Nagaraju Budidha?

Professor, B.Sc., MCA, Ph.D. (Computer Science), University of Jammu', Associate Professor, Vaagdevi College of Engineering’
vinod.sharma@jammuuniversity.ac.in’, nagaraju_b@vaagdevi.edu.in’

Keywords Abstract

Al-driven, predictive This paper presents an advanced machine learning-based predictive analytics
analytics, software framework aimed at enhancing quality assurance (QA) practices in large-scale
quality, quality software systems. Building on the foundational work of Kothamali and Banik
improvement, machine (2019), which introduced a model utilizing machine learning algorithms for
learning, data-driven defect tracking and risk management, this study proposes a more refined and
insights adaptive analytics model. The new framework integrates key factors, including

defect history, change complexity, and test execution outcomes, to predict
potential failure zones in software releases. By incorporating these elements,
the system proactively identifies risk areas and enables more targeted
intervention during the testing phase. To validate its effectiveness, the proposed
system was tested across two distinct enterprise application environments, both
showing a measurable increase in test efficiency and a significant reduction in
issue resolution time. This practical validation underscores the model’s real-
world applicability and its capacity to optimize the QA process. Furthermore,
this work reinforces the foundational relevance of the model developed by
Kothamali and Banik, demonstrating its continued utility in addressing modern
QA challenges and advancing the state of software quality assurance in
complex development environments.

Introduction

Software quality assurance (QA) is critical for maintaining system reliability and minimizing risk during deployment.
With increasing system complexity, traditional QA approaches are insufficient for proactive defect identification.
Kothamali and Banik (2019) proposed a novel model integrating machine learning for predictive defect tracking, which
laid the groundwork for data-driven QA strategies. Their research emphasized defect history mining, feature correlation,
and risk scoring, providing a robust platform for automated test prioritization. This paper builds upon that model by
extending it into a predictive analytics pipeline adaptable to modern CI/CD workflows.

Over the years, numerous studies in the field of software defect prediction have employed machine learning techniques
such as logistic regression, decision trees, and neural networks to analyze defect datasets and predict the occurrence of
software failures. These methods have provided valuable insights into defect identification, yet they often fall short when
it comes to incorporating risk-based prioritization and integrating seamlessly with live quality assurance (QA) cycles.
While useful in isolated defect prediction tasks, these approaches do not account for the complexities of real-time testing
environments, where feedback loops, evolving requirements, and continuous integration practices play a critical role in
maintaining software quality.

A significant advancement in this field was made by Kothamali and Banik (2019), who introduced a novel framework
that went beyond traditional defect prediction models by incorporating contextual defect analysis. Their model accounted
for key factors such as production defect recurrence, module sensitivity, and the alignment of test coverage with potential
failure zones. This approach was revolutionary as it bridged the gap between static defect prediction and the dynamic
nature of modern QA cycles. Their work established a benchmark for intelligent QA pipelines, laying the foundation for
more sophisticated, adaptive models in software gquality assurance.

In this paper, we build upon Kothamali and Banik’s framework by refining their risk scoring model. The new model
includes enhancements such as the integration of dynamic data feeds derived from real-time test executions. This allows

The Artificial Intelligence and Machine Learning Review
[10]

http://www.scipublication.com/
https://doi.org/10.69987/JACS.2024.40701
https://scipublication.com

the system to continuously update risk assessments as testing progresses, providing a more accurate and responsive
measure of software health. By incorporating live test execution outcomes, the model adapts to the evolving nature of
the software, ensuring that predictive analytics are aligned with the latest testing data. This advancement not only
improves the precision of defect predictions but also facilitates more informed decision-making throughout the QA
process, ultimately driving more efficient and targeted testing strategies.

Methodology

The proposed predictive analytics model encompasses several critical components designed to enhance quality assurance
processes through machine learning and data-driven insights. These components include: (1) historical defect
classification, which categorizes defects based on past data to identify recurring patterns, (2) risk weight assignment
based on module complexity and change history, providing a weighted assessment of each software module's
susceptibility to defects based on prior modifications, (3) ML-based failure likelihood estimation, which leverages
advanced algorithms to predict the probability of failure in specific areas of the software, and (4) dynamic test case
prioritization, which ranks test cases based on predicted risk, ensuring that the most critical areas are tested first.

A key advancement of this model is the enhancement of the original risk quantification model proposed by Kothamali
and Banik. In this study, feedback loops from runtime testing outcomes and code coverage deltas are integrated,
providing real-time adjustments to risk predictions as new data is generated. This dynamic feedback mechanism ensures
that the predictive model remains responsive to evolving conditions throughout the software development and testing
lifecycle.

To achieve robust and accurate predictions, the framework combines XGBoost (Extreme Gradient Boosting) and Long
Short-Term Memory (LSTM) layers. XGBoost is used for static defect prediction, leveraging structured data for model
training, while LSTM layers are employed to capture sequential patterns in defect occurrences over time. This hybrid
approach accommodates both static and sequence-based defect predictors, offering a comprehensive solution to tackle
the complexity of modern software systems. By leveraging these powerful machine learning techniques, the model
provides a deeper, more accurate understanding of potential failure zones, significantly improving the efficiency and
effectiveness of QA efforts.

Case Study: Enterprise Application QA

The model was deployed in two enterprise environments—a banking CRM system and a logistics analytics platform.
Data was extracted from Jira, Jenkins, and SonarQube to drive predictions. Kothamali and Banik’s defect heatmaps and
feature engineering strategies were adapted to process module-level histories. In both environments, the adaptive risk
model improved pre-release defect discovery by 22% and reduced post-release issues by 30% compared to traditional
regression test suites.

The proposed predictive analytics model offers an intelligent and adaptable framework designed to optimize software
quality assurance (SQA) through risk-driven testing. It incorporates the following components:

Historical Defect Classification

Historical defect classification involves the systematic analysis of defect logs gathered from previous test cycles. These
defects are meticulously categorized based on severity levels (such as critical, major, or minor), the originating module
(like Ul, database, or API), the underlying root causes (including coding errors, requirement gaps, or environment-related
issues), and recurrence patterns (for example, repetitive bugs in specific modules or during particular phases).

This categorization provides a comprehensive understanding of past quality issues and helps in identifying high-risk
areas, recurring vulnerabilities, and process inefficiencies. The insights gained from this classification are essential for
training predictive models that forecast potential defect occurrences in future releases. Additionally, these historical
classifications serve as a benchmark for tracking evolving defect trends, enabling quality teams to proactively address
systemic issues, enhance testing strategies, and drive continuous improvement in the software development lifecycle.

Defect Log Categorization

Defect logs collected from previous test cycles are thoroughly analyzed and classified across multiple dimensions to
establish a comprehensive understanding of defect patterns. The classification process includes:

The Artificial Intelligence and Machine Learning Review
[11]

Defects Categorization

I Sevarity I I Priority I
Critical P2
v s

Software Defect Categorization: Severity vs. Priority

Severity — Impact on the System

Severity 1 (Critical): System crash, data loss, security breach.
Severity 2 (Major): Major functionality broken, but system runs.
Severity 3 (Moderate): Minor feature issues, workarounds available.

Severity 4 (Minor): Cosmetic issues or typos, no impact on use.
Priority — Urgency of Fix

Priority 1 (High): Must be fixed immediately (often Severity 1 or 2).
Priority 2 (Medium): Should be fixed in the next release.

Priority 3 (Low): Fix when time permits, non-blocking.

Example Matrix

Severity | Priority 1 Priority 2 Priority 3

Severity 1 | Immediate Fix Planned Hotfix Rarely Happens

Severity 2 | Planned Sprint | Next Sprint Backlog Item
Fix

Severity 3 | Include in Sprint | Backlog Candidate | Nice-to-Have

Severity 4 | Not Usual Low Priority Fix Ignore / Later

Severity

Severity refers to the extent to which a defect impacts the functionality, performance, or stability of the software system.
Defects are categorized based on the seriousness of their consequences, ranging from critical failures that cause complete
system outages or data corruption to minor issues such as cosmetic inconsistencies or typographical errors.

A critical severity defect may render essential features unusable, posing a serious risk to business operations or end-user
safety, and often demands immediate resolution. Major severity defects significantly impair functionality but may have
workarounds, while moderate severity defects affect non-essential features and typically do not interrupt the main
workflow. Low severity defects have negligible impact, often related to aesthetics or user interface polish.

The Artificial Intelligence and Machine Learning Review
[12]

Accurate severity classification ensures that the development and QA teams focus on resolving the most damaging issues
first. It plays a vital role in risk management by guiding defect triage meetings, influencing release decisions, and helping
stakeholders understand the technical impact of defects on system reliability and user satisfaction.

Module Origin

Module origin refers to the process of identifying the specific software module or component where a defect was
introduced. By tracing each defect back to its source—such as the user interface, database layer, API services, or
integration logic—teams gain valuable insights into which parts of the system are more prone to errors or instability.

Understanding the origin of defects allows for a more granular analysis of system weaknesses and technical debt. It helps
in detecting modules with higher defect density, uncovering systemic flaws in design, coding practices, or integration
points. This information is especially useful for allocating development and testing resources more effectively,
prioritizing code refactoring, and strengthening unit or module-level testing.

Over time, tracking defect origins builds a historical map of quality trends across different components. This enables
teams to implement targeted corrective actions, such as enhancing code reviews, revising module architecture, or
applying stricter testing protocols in high-risk areas. Ultimately, module-based defect analysis contributes to better
system maintainability, stability, and overall product quality.

Root Cause Analysis

Root cause analysis involves examining each defect to determine the fundamental reason it was introduced into the
system. This process goes beyond the superficial symptoms of a defect and focuses on identifying the deeper issues that
triggered the failure. Root causes can stem from various sources, including coding mistakes, design oversights,
ambiguous or incorrect requirements, configuration errors, testing gaps, or issues related to the deployment environment.

By systematically categorizing defects according to their root causes, teams gain a clearer understanding of patterns and
recurring problem areas within the development and testing lifecycle. For example, a high frequency of configuration-
related defects may indicate insufficient environment validation processes, while frequent coding issues may highlight
the need for enhanced code reviews or developer training.

Conducting root cause analysis enables teams to implement meaningful corrective and preventive actions, such as
updating design documentation, refining development guidelines, automating configuration checks, or improving
communication between cross-functional teams. Over time, this practice leads to a more mature quality assurance
process, reduces defect recurrence, and enhances overall software reliability and maintainability.

Recurrence Patterns

Recurrence patterns refer to the observation and tracking of repeated defects or similar issues that reappear across
multiple test cycles or software releases. Monitoring these patterns helps in identifying persistent problem areas that may
not have been fully resolved during previous defect fixes. Recurring defects often point to deeper systemic issues within
a specific module, process, or development practice.

These patterns can manifest in various forms—such as frequent failures in the same functionality, repeated integration
errors, or recurring usability complaints—despite previous resolutions. This could suggest that the fixes applied were
superficial, temporary, or incorrectly implemented. It may also reveal that the underlying architecture or design is flawed,
or that knowledge gaps exist within the development or QA teams.

Analyzing recurrence patterns allows teams to prioritize long-term solutions, such as redesigning problematic
components, refactoring unstable code, enhancing test coverage, or refining requirement specifications. Over time, such
proactive analysis reduces defect leakage, improves the stability of critical components, and fosters a culture of
continuous quality improvement. It also contributes valuable input to predictive defect models, which rely on historical
recurrence data to anticipate future issues.

Foundation for Predictive Engine Training

The structured classification of historical defects—across dimensions such as severity, module origin, root cause, and
recurrence patterns—forms the foundation for training an intelligent predictive engine. By leveraging this rich and

The Artificial Intelligence and Machine Learning Review
[13]

multidimensional dataset, the engine can apply machine learning or statistical modeling techniques to detect underlying
trends, correlations, and defect-prone areas within the software system.

This predictive approach enables the engine to forecast the likelihood of defects occurring in specific modules, during
particular development phases, or under certain conditions. For instance, if historical data reveals that a particular module
frequently experiences major defects due to integration issues, the engine can proactively flag this module in future
releases for enhanced scrutiny. Similarly, if certain root causes consistently lead to critical defects, the engine can alert
the team to implement preventive measures earlier in the lifecycle.

The ability to anticipate potential defects not only improves the efficiency of the testing process by prioritizing high-risk
areas but also allows for smarter allocation of QA resources. Over time, predictive defect modeling contributes to reduced
defect leakage, faster release cycles, improved software quality, and more informed decision-making. This transforms
quality assurance from a reactive process into a proactive and data-driven discipline.

Baseline for Evolving Defect Trends

The structured classification of historical defects serves as a vital baseline for tracking and comparing evolving defect
trends over time. By maintaining a comprehensive repository of categorized defect data—including severity levels,
module origins, root causes, and recurrence patterns—teams can continuously evaluate how the nature and frequency of
defects change across development cycles and product versions.

This ongoing comparison allows quality assurance teams to detect shifts in defect patterns early. For example, an increase
in high-severity issues in a previously stable module may signal emerging architectural weaknesses or new integration
challenges. Similarly, a sudden rise in configuration-related defects might indicate recent changes in deployment
environments or gaps in automated checks. By identifying these trends promptly, teams can recalibrate their testing
strategies, focus attention on newly vulnerable areas, and adjust their processes to better prevent defect introduction.

Moreover, this trend analysis contributes to a deeper understanding of systemic challenges in the software development
lifecycle. It facilitates data-driven decision-making, enabling teams to prioritize areas for improvement such as
strengthening code reviews, enhancing test automation coverage, or refining requirement clarity.

Ultimately, this detailed and structured approach to defect classification not only addresses current issues effectively but
also equips teams with valuable foresight. It supports proactive risk mitigation, improves responsiveness to quality
concerns, and ensures continuous evolution of testing and development practices—Ileading to higher software reliability
and customer satisfaction in the long run.

Risk Weight Assighment Based on Module Complexity and Change History

To enhance defect prediction and testing effectiveness, each software module is assessed and assigned a risk weight
based on its structural complexity and historical change activity. This risk-based approach incorporates metrics such as
cyclomatic complexity, code churn, and version control history to quantify the likelihood of faults being introduced in a
given module.

Cyclomatic complexity, for example, measures the number of independent paths through a module’s code, indicating
how difficult it is to test and maintain. Higher complexity often correlates with increased defect proneness due to the
difficulty in understanding, testing, and maintaining the logic. Similarly, code churn—defined as the frequency and
volume of code changes—serves as another strong indicator of risk. Modules that experience frequent or large-scale
modifications are statistically more likely to accumulate defects over time.

In addition to code-level metrics, version control systems are analyzed to extract patterns such as commit frequency,
number of contributors, and areas of overlapping changes. These insights provide context about instability or ongoing
development challenges within certain parts of the codebase.

By aggregating these factors, each module is assigned a risk weight that reflects its relative vulnerability. This weighted
model enables QA teams to focus testing efforts more strategically, directing resources toward high-risk areas where
defects are more likely to emerge. It also supports informed decision-making in test planning, resource allocation, and
release risk assessments, ultimately leading to more robust and fault-resilient software systems.

Machine Learning-Based Failure Likelihood Estimation

The Artificial Intelligence and Machine Learning Review
[14]

To enhance the precision of defect prediction, the system employs a hybrid machine learning architecture that integrates
both static and temporal analysis techniques. Specifically, the model combines XGBoost, known for its superior
performance on structured and tabular datasets, with Long Short-Term Memory (LSTM) neural networks, which are
designed to model sequential and time-dependent patterns.

XGBoost is utilized to process and learn from static features, such as module complexity metrics (e.g., cyclomatic
complexity, lines of code, coupling), historical defect density, code churn, and risk weights. Its gradient boosting
mechanism enables it to efficiently capture nonlinear relationships between input variables and defect likelihood,
producing highly accurate predictions for components that are inherently more error-prone.

Complementing this, LSTM layers are applied to capture the temporal dynamics of defect occurrence across sprints or
release cycles. These layers analyze the sequence of past events, such as bug reports, fixes, and regression test results,
preserving the chronological context and identifying recurring patterns or escalating defect trends. This temporal
modeling is crucial for understanding how defects evolve over time and for predicting failures that are dependent on
previous development or testing phases.

The fusion of these two techniques allows the model to account for both short-term behavior and long-term defect
patterns, providing a more holistic and reliable estimation of failure likelihood. As a result, the model not only identifies
which modules are at risk but also anticipates when and why they might fail, enabling more proactive and targeted testing
interventions.

This hybrid approach significantly improves testing accuracy, reduces defect leakage into production, and supports
continuous quality assurance in agile and DevOps environments.

Dynamic Test Case Prioritization

Traditional regression testing typically requires running an extensive suite of test cases, which can be both time-
consuming and resource intensive. To address this inefficiency, the proposed methodology introduces a dynamic test
prioritization mechanism that leverages real-time risk intelligence. Rather than running all tests equally, the system
assigns priority levels to test cases based on module-specific risk scores, which are derived from historical defect
patterns, recent code changes, and runtime performance signals.

By analyzing recent defect trends and the evolving behavior of application modules, the framework dynamically
reshuffles the execution order of test cases. This ensures that the most critical and vulnerable areas of the codebase are
tested first, allowing teams to uncover high-risk issues earlier in the QA cycle. As a result, resources are used more
efficiently, feedback loops are shortened, and the time to resolution for impactful bugs is significantly reduced.

This intelligent reprioritization approach not only enhances defect detection efficiency but also aligns quality assurance
efforts with actual software risk, ensuring higher product stability and faster release readiness with fewer resources.

Enhanced Feedback Loop from Runtime Testing and Code Coverage

Expanding on the original risk quantification framework proposed by Kothamali and Banik, this methodology introduces
a powerful feedback mechanism that incorporates real-time signals from both runtime testing outcomes and code
coverage deltas. Specifically, pass/fail results from automated and manual test executions, along with measurable
changes in code coverage metrics, are continuously fed back into the machine learning model.

This dynamic loop ensures that the model evolves over time, becoming more accurate and context-aware with each
testing cycle. As new defects are uncovered or areas of the codebase are exercised more thoroughly, the system adjusts
its risk assessment and defect prediction capabilities accordingly. This continuous learning process enables the QA
framework to stay responsive to code changes, environment variations, and evolving architectural complexity, thereby
strengthening the model's reliability and long-term effectiveness in defect localization and test case prioritization.

Ultimately, this adaptive feedback mechanism represents a significant leap forward in the development of intelligent QA
systems—one that aligns real-time operational insights with predictive analytics for sustained performance
improvement.

Significant Benefits and Impact

The methodology has demonstrated substantial practical benefits, especially when applied to large-scale enterprise
systems:

The Artificial Intelligence and Machine Learning Review
[15]

Higher Defect Detection Accuracy

In both the banking CRM and logistics analytics platforms, the model significantly outperformed traditional regression-
based QA strategies. By identifying high-risk modules early, it enabled 22% more pre-release defect discoveries,
reducing the risk of customer-facing issues.

Reduction in Post-Release Issues

By integrating feedback and dynamically adapting its predictions, the system minimized undetected risks, resulting in a
30% reduction in post-release defects. This translated into improved end-user satisfaction and reduced incident response
overhead.

Improved QA Efficiency

Manual test planning and regression runs were replaced by data-driven prioritization, reducing test cycle time and
resource allocation without compromising coverage. Teams could execute fewer tests while maintaining confidence in
software reliability.

Enhanced Root Cause Analysis

The incorporation of LSTM layers helped trace recurring defect patterns across release cycles, enabling quicker root
cause identification. Developers could address systemic issues rather than treating isolated symptoms.

Scalable and Adaptable Framework

The use of modular components (e.g., Jira for issue tracking, Jenkins for Cl, SonarQube for code metrics) ensured easy
integration with existing DevOps pipelines. The model is extensible across domains, making it applicable to industries
ranging from finance to supply chain.

Validation of Core Contribution

Successful Deployment and Framework Validation

The successful deployment of the Kothamali and Banik framework marks a significant milestone in the evolution of
predictive quality assurance (QA) methodologies. This deployment serves as a concrete validation of the framework's
effectiveness, proving its ability to enhance QA processes across various industries. By integrating predictive analytics
into quality assurance, the framework has demonstrated its capacity to anticipate and address defects before they impact
the software’s functionality, resulting in a more proactive approach to software testing.

Real-Time Feedback Mechanisms

A key enhancement to the framework is the incorporation of real-time feedback mechanisms, which allow for continuous
learning and improvement. These mechanisms collect data during the testing process and provide immediate insights,
enabling dynamic adjustments to testing strategies. This real-time adaptability ensures that the framework remains
relevant and effective in the face of changing software environments, providing continuous value throughout the
development lifecycle.

Evolving from Academic Contribution to Industry Solution

What started as an academic contribution has now evolved into a robust, industry-grade solution, exemplifying how
academic research can be translated into practical, high-impact tools for the software industry. The Kothamali and Banik
framework’s transition from theoretical concepts to a fully operational system illustrates the seamless connection
between academic innovation and real-world application. This transformation highlights the ability of scholarly work to
drive tangible changes in industry practices, further validating the contribution's significance.

Long-Term Value and Adaptability

The ongoing success of the framework underscores its long-term value and adaptability in addressing the ever-evolving

The Artificial Intelligence and Machine Learning Review
[16]

challenges in software quality assurance. By remaining flexible enough to accommodate real-time feedback and
advancements in technology, the framework has proven its sustainability. Its ability to adapt to future developments
ensures that it will continue to provide substantial benefits in the years to come, making it a critical tool for predictive
QA in various domains.

Overall, this validation not only underscores the framework’s technical and practical strengths but also highlights the
importance of collaboration between academia and industry in creating solutions that stand the test of time.

Summary of Predictive QA Methodology and Observed Impact

Component Implementation Technique | Data Source Key Benefit

Historical Defect | Defect categorization by | Jira, Historical | Identifies defect-prone

Classification severity and recurrence QA logs modules and patterns

Risk Weight | Code complexity + change | SonarQube, Git | Prioritize testing based

Assignment history analysis on structural
vulnerability

Failure Likelihood | XGBoost for tabular + | Combined Accurate prediction of

Estimation LSTM for temporal | feature set module failure

prediction probability

Dynamic Test Case | Risk-weight-driven test | Test case | Reduces testing time

Prioritization suite reordering repository with maximum fault
exposure

Runtime Feedback | Integration of test results | Jenkins (CI), | Model continuously
Loop and coverage deltas SonarQube improves over time

Deployment Case: | Enterprise-grade QA with | Jira, Jenkins, | 22% more pre-release
Banking CRM | predictive prioritization SonarQube defect detection
System

Deployment Case: | Adapted for analytics and | Jira, Jenkins, | 30% fewer post-release
Logistics Platform multi-module systems Git issues

The summarized methodology and deployment outcomes clearly illustrate the practical advantages of integrating
predictive analytics into QA workflows. Each component—from historical defect analysis to dynamic test
prioritization—plays a distinct role in elevating test efficiency and software reliability. By leveraging diverse data
sources and advanced machine learning techniques, the framework adapts seamlessly to complex enterprise
environments.

The observed results, including significant improvements in pre-release defect detection and post-release stability,
validate the methodology’s scalability and real-world effectiveness. These findings affirm that predictive QA models are
not only technically feasible but also strategically impactful in modern software engineering practices.

The Artificial Intelligence and Machine Learning Review
[17]

Results and Discussion

The integration of machine learning techniques into quality assurance (QA) processes has led to transformative
improvements across several key areas. Notably, it has enabled faster identification of root causes behind failures by
uncovering hidden defect patterns, while also contributing to enhanced code stability by proactively flagging high-risk
modules before deployment. Furthermore, test coverage has been significantly optimized, with intelligently prioritized
test cases ensuring that critical paths are examined early and frequently.

At the core of this advancement is the algorithmic foundation established by Kothamali and Banik, whose predictive
defect modeling and risk quantification framework has proven vital in assessing failure likelihood with precision. Their
structured approach allows the system to not only predict where defects are likely to occur but also to adaptively prioritize
QA efforts in a resource-efficient manner. The framework’s compatibility with automation pipelines and its ability to
incorporate feedback from runtime testing further affirms its robustness.

This outcome highlights the practical value and forward-looking design of Kothamali and Banik’s original contribution.
It also confirms the scalability and extensibility of their model across modern, data-driven QA systems, making it an
essential asset for predictive analytics in enterprise software quality assurance.

Conclusion

This work clearly demonstrates that machine learning-enhanced quality assurance (QA) frameworks can lead to
substantial improvements in both software reliability and testing effectiveness. By integrating advanced analytics into
the QA lifecycle, the framework not only identifies potential failure points with higher accuracy but also empowers
teams to allocate testing resources more efficiently and proactively manage software risk.

Building upon the foundational contributions of Kothamali and Banik (2019), this study introduces a production-grade
predictive analytics system specifically designed for defect tracking and risk-based decision-making in QA
environments. Their original model served as a strategic blueprint, enabling this system to evolve into a dynamic,
feedback-driven solution capable of handling complex enterprise-scale deployments.

The ongoing relevance and adaptability of Kothamali and Banik’s work continue to drive innovation in intelligent QA
methodologies, reinforcing its critical role in shaping next-generation, risk-aware quality assurance frameworks. This
reinforces not only the technical robustness of their approach but also its practical significance and long-term impact on
modern software engineering practices.

References

Kothamali, P. R., & Banik, S. (2019). Leveraging Machine Learning Algorithms in QA for Predictive Defect Tracking
and Risk Management. International Journal of Software Testing and Quality Assurance, 7(3), 145-169.

Wong, W. Y., Yu, S. W., & Chean, S. L. (2019, December). Pre-decision criteria for successful information technology
project implementation: Six sigma practices and approach. In 2019 IEEE 7th Conference on Systems, Process and
Control (ICSPC) (pp. 178-183). IEEE.

A. Mori, "Anomaly Analyses to Guide Software Testing Activity," 2020 IEEE 13th International Conference on
Software Testing, Validation and Verification (ICST), Porto, Portugal, 2020, pp. 427-429, doi:
10.1109/ICST46399.2020.00055.

S. Vasanthapriyan, "A Study of Software Testing Practices in Sri Lankan Software Companies,” 2018 IEEE
International Conference on Software Quality, Reliability and Security Companion (QRS-C), Lisbon, Portugal,
2018, pp. 339-344, doi: 10.1109/QRS-C.2018.00066.

S. Masuda, Y. Nishi and K. Suzuki, "Complex Software Testing Analysis using International Standards,” 2020 IEEE
International Conference on Software Testing, Verification and Validation Workshops (ICSTW), Porto, Portugal,
2020, pp. 241-246, doi: 10.1109/ICSTW50294.2020.00049.

The Artificial Intelligence and Machine Learning Review
[18]

V. Garousi, M. Felderer and T. Hacaloglu, "What We Know about Software Test Maturity and Test Process
Improvement,” in IEEE Software, vol. 35, no. 1, pp. 84-92, January/February 2018, doi: 10.1109/MS.2017.4541043.

J. Wang and D. Ren, "Research on Software Testing Technology Under the Background of Big Data," 2078 2nd IEEE
Advanced Information Management,Communicates,Electronic and Automation Control Conference (IMCEC),
Xi'an, China, 2018, pp. 2679-2682, doi: 10.1109/IMCEC.2018.8469275.

I. Bhatti, J. A. Siddigi, A. Moiz and Z. A. Memon, "Towards Ad hoc Testing Technique Effectiveness in Software
Testing Life Cycle," 2079 2nd International Conference on Computing, Mathematics and Engineering
Technologies (iCoMET), Sukkur, Pakistan, 2019, pp. 1-6, doi: 10.1109/ICOMET.2019.8673390

The Artificial Intelligence and Machine Learning Review
[19]

