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 This paper examines intraday liquidity patterns across global equity markets 
and evaluates their implications for market risk assessment. Utilizing high-
frequency order book and transaction data from five major exchanges (NYSE, 
NASDAQ, LSE, TSE, and HKEX) spanning January 2019 through December 
2023, we analyze the temporal dynamics of multiple liquidity dimensions 
including bid-ask spreads, market depth, and order book resilience. The 
empirical analysis employs panel regression models with flexible time-of-day 
indicators, vector autoregression with impulse response functions, and 
principal component analysis to characterize liquidity patterns and cross-
market dependencies. Results reveal pronounced U-shaped patterns in bid-ask 
spreads across all markets, with statistically significant time-of-day effects and 
substantial cross-market heterogeneity in pattern magnitude. We document 
strong regional commonality in liquidity dynamics, with correlation 
coefficients ranging from 0.832 between NYSE-NASDAQ to 0.265 between 
NASDAQ-HKEX. The analysis identifies asymmetric spillover effects, with 
developed markets exerting stronger influence on emerging markets than vice 
versa. Integration of intraday liquidity metrics into GARCH-based risk 
forecasting models yields 12-18% improvements in prediction accuracy, with 
the largest gains during periods of market stress. These findings provide 
valuable insights for risk management professionals, enhancing both risk 
assessment frameworks and execution timing strategies in global financial 
markets. 

1. Introduction

1.1. Background and Significance of Intraday Liquidity Analysis 

Financial markets worldwide exhibit distinct intraday patterns in trading activity, price formation, and liquidity 
provision. Market liquidity constitutes a critical dimension of market quality and directly influences transaction costs, 
price discovery processes, and overall market efficiency. Smith et al.[1] documented significant variations in liquidity 
measures across different trading hours, revealing systematic patterns that persist across various market conditions. 
These patterns reflect both institutional market structures and the behavioral characteristics of market participants. 
Trading algorithms increasingly incorporate intraday liquidity dynamics into execution strategies to minimize 
implementation shortfall and optimize trading performance. As demonstrated by Johnson[2], market participants adjust 
their trading behaviors in response to anticipated liquidity conditions, creating feedback mechanisms that further 
reinforce existing intraday patterns. The measurement and analysis of intraday liquidity have gained prominence in 
financial research given their pivotal role in market stability assessment and risk management frameworks. Global equity 
markets present particularly instructive cases for examining intraday liquidity dynamics due to their relatively high 
trading volumes, diverse participant bases, and varied market structures as shown in research by Williams and Taylor[3]. 
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1.2. Market Microstructure and Risk Assessment Research Gaps 

While substantial literature exists on market microstructure and risk assessment individually, the integration of these 
research streams remains underdeveloped. Market microstructure research traditionally focuses on price formation 
processes, market design, and transaction cost analysis. Conversely, risk assessment methodologies often rely on daily 
or lower-frequency data, potentially overlooking critical intraday dynamics. Brown[4] identified significant limitations 
in conventional risk models that fail to incorporate high-frequency liquidity metrics. The assumption of constant liquidity 
throughout the trading day introduces systematic errors in risk calculations, especially during periods of market stress 
when liquidity dynamics become highly non-linear. Cross-market analyses of intraday liquidity patterns remain scarce, 
limiting our understanding of global interconnections and potential contagion mechanisms. Research by Chen and 
RodriguezError! Reference source not found. demonstrated meaningful differences in liquidity provision mechanisms 
across developed and emerging markets, suggesting the need for market-specific approaches to liquidity risk modeling. 
Methodological challenges in measuring comparable liquidity metrics across diverse market structures have hampered 
comprehensive cross-market analyses. 

1.3. Research Objectives and Contributions 

This research aims to characterize intraday liquidity patterns across global equity markets and establish their implications 
for market risk assessment. The study employs a multi-metric approach to liquidity measurement, incorporating depth, 
breadth, resilience, and immediacy dimensions. By analyzing high-frequency order book and transaction data, this paper 
identifies systematic intraday patterns and examines their stability across different market regimes. The research 
quantifies the relationship between intraday liquidity dynamics and various market risk indicators, developing predictive 
frameworks that incorporate liquidity considerations into risk forecasts. This study contributes to the literature by 
developing comparable liquidity metrics across diverse market structures, enabling meaningful cross-market analyses. 
Martinez and Lee[5] previously highlighted the importance of standardized liquidity measurement approaches for cross-
market comparisons. The findings provide practical implications for risk management professionals, market regulators, 
and algorithmic traders seeking to incorporate intraday liquidity considerations into their decision-making processes. 
The research extends previous frameworks by explicitly modeling the temporal dependencies in liquidity provision and 
their feedback effects on market risk. 

2. Literature Review 

2.1. Theoretical Framework of Market Microstructure and Liquidity 

Market microstructure theory provides the conceptual foundation for analyzing liquidity dynamics in financial markets. 
Traditional microstructure models distinguish between inventory-based and information-based approaches to explaining 
market maker behavior and liquidity provision. Park and KimError! Reference source not found. established a 
comprehensive analytical framework integrating both perspectives, demonstrating how adverse selection costs and 
inventory management constraints jointly determine bid-ask spreads and market depth. Market liquidity encompasses 
multiple dimensions including tightness (transaction costs), depth (order book volume), breadth (impact resilience), and 
immediacy (execution speed). These dimensions interact in complex ways throughout the trading day as market 
participant composition shifts. Modern microstructure theory extends beyond traditional dealer markets to incorporate 
limit order book dynamics and endogenous liquidity provision by high-frequency traders and algorithmic market 
participants. The proliferation of electronic trading platforms has fundamentally altered liquidity provision mechanisms, 
creating more dynamic but potentially fragile market structures. Jones et al.Error! Reference source not found. 
documented the transformation of liquidity provision across global equity markets, highlighting the displacement of 
traditional market makers by proprietary trading firms employing sophisticated algorithmic strategies. This structural 
shift has implications for both normal market functioning and stress scenarios, necessitating refined approaches to 
liquidity measurement and modeling. 

2.2. Empirical Evidence on Intraday Liquidity Patterns 

Empirical research consistently documents pronounced intraday patterns in market liquidity across global equity 
markets. ThompsonError! Reference source not found. identified a characteristic U-shaped pattern in bid-ask spreads, 
with elevated spreads at market open and close, and relatively narrower spreads during mid-day trading hours. This 
pattern reflects information asymmetry, inventory risk management, and trading activity concentration. Market depth 
typically follows an inverse pattern, with shallower order books during opening and closing periods. High-frequency 
analysis reveals additional microstructure patterns within trading sessions, including response to scheduled 
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macroeconomic announcements and corporate events. The stability of these patterns varies across market regimes, with 
significant alterations during periods of elevated volatility or market stress. Wilson and GarciaError! Reference source 
not found. analyzed the evolution of intraday liquidity patterns during financial crises, documenting substantial 
deterioration in liquidity metrics and amplification of existing intraday patterns during stress periods. The predictability 
of intraday liquidity dynamics creates opportunities for strategic trading behavior by informed participants, potentially 
exacerbating adverse selection costs during specific trading periods. 

2.3. Interconnections Between Liquidity Risk and Market Risk 

Liquidity risk and market risk exhibit substantial interdependencies that manifest distinctly across different time 
horizons. Traditional risk management frameworks treat market and liquidity risks separately, potentially 
underestimating their joint impact during stress scenarios. Roberts[6] proposed an integrated risk assessment 
methodology incorporating both risk dimensions, demonstrating improved forecasting performance during periods of 
market turbulence. Market illiquidity amplifies price volatility through multiple mechanisms, including delayed price 
discovery, order execution uncertainty, and liquidity spirals where price declines trigger further liquidity withdrawal. 
The temporal dimension of this relationship reveals stronger interconnections during specific intraday periods, 
particularly market openings and closings when liquidity tends to be naturally constrained. Cross-asset and cross-market 
liquidity commonality introduces additional complexity to risk assessment frameworks. Zhang and MillerError! 
Reference source not found. documented significant liquidity co-movement across global equity markets, with 
pronounced spillover effects during crisis periods. Their analysis revealed that liquidity shocks originating in one market 
frequently propagate internationally, suggesting the importance of global perspectives in liquidity risk management 
frameworks. 

3. Data and Methodology 

3.1. Data Collection and Sample Description 

This research utilizes high-frequency trading data from five major global equity markets to examine intraday liquidity 
patterns and their market risk implications. The dataset encompasses the New York Stock Exchange (NYSE), NASDAQ, 
London Stock Exchange (LSE), Tokyo Stock Exchange (TSE), and Hong Kong Stock Exchange (HKEX) over the period 
January 2019 through December 2023. Following methodological approaches established by Hughes and Wang[7], we 
collected tick-by-tick data for constituent stocks of major indices in each market: S&P 500 (NYSE), NASDAQ-100, 
FTSE 100 (LSE), Nikkei 225 (TSE), and Hang Seng Index (HKEX). The data includes limit order book information 
capturing the top five levels of depth, transaction records with millisecond timestamps, and comprehensive trading 
volume statistics obtained from the Refinitiv Tick History database. 

Table 1: Sample Composition by Market and Time Period 

Market Index 
Number of 
Stocks 

Trading 
Days 

Order Book Snapshots 
(millions) 

Transactions 
(millions) 

NYSE S&P 500 243 1,247 924.8 487.3 

NASDAQ 
NASDAQ-
100 

100 1,247 856.2 532.1 

LSE FTSE 100 100 1,233 612.5 289.8 

TSE Nikkei 225 225 1,218 508.4 276.5 

HKEX Hang Seng 80 1,201 324.1 214.3 

Total - 748 6,146* 3,226.0 1,800.0 
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*Total trading days across all markets (not unique days) 

The dataset encompasses 1,247 trading days, with minor variations across markets due to different holiday schedules 
and trading suspensions. The final dataset contains approximately 3.2 billion order book snapshots and 1.8 billion 
transactions after applying data cleaning procedures recommended by Davidson et al.Error! Reference source not 
found.. 

Table 2: Market Characteristics and Microstructure Features 

Market 
Trading Hours 
(Local) 

Avg. Daily Volume 
(Billion USD) 

Market Cap 
(Trillion USD) 

Minimum Tick 
Size 

Trading Mechanism 

NYSE 
9:30 AM - 4:00 
PM 

34.8 26.2 
$0.01 for stocks 
≥$1.00 

Hybrid 
(Electronic/Floor) 

NASDAQ 
9:30 AM - 4:00 
PM 

41.2 19.4 
$0.01 for stocks 
≥$1.00 

Electronic LOB 

LSE 
8:00 AM - 4:30 
PM 

8.4 3.8 
Variable by price 
band 

Electronic LOB 

TSE 
9:00 AM - 3:00 
PM 

15.6 5.9 
Variable by price 
band 

Electronic LOB 

HKEX 
9:30 AM - 4:00 
PM 

9.7 4.2 
Variable by price 
band 

Electronic LOB 

The sample selection process prioritized stocks with high market capitalization and liquidity to ensure data quality and 
comparability. Table 3 shows the distribution of sample stocks across industry sectors based on Global Industry 
Classification Standard (GICS) classifications, maintaining similar sector representation across markets to minimize 
composition effects in cross-market analyses. 

Table 3: Industry Sector Distribution of Sample Stocks by Market (%) 

Sector NYSE NASDAQ LSE TSE HKEX 

Information Technology 21.4 48.0 8.0 14.2 10.0 

Financials 13.6 5.0 21.0 15.1 32.5 

Health Care 12.8 12.0 10.0 8.4 3.8 

Consumer Discretionary 12.3 18.0 12.0 20.9 23.8 

Communication Services 10.7 9.0 5.0 6.7 10.0 

Industrials 9.1 4.0 15.0 22.2 7.5 

Consumer Staples 7.4 2.0 14.0 5.3 3.8 
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Energy 5.3 0.0 8.0 0.4 2.5 

Materials 4.1 0.0 5.0 4.4 3.8 

Utilities 3.3 2.0 2.0 2.4 2.3 

Following Adams and Powell[8], we apply rigorous data cleaning procedures to address common high-frequency data 
issues including outliers, recording errors, and non-standard trading conditions. The cleaning process removes 
observations during trading halts, circuit breakers, and other exceptional market conditions. All data is aggregated to 
one-minute intervals for primary analysis, with supplementary analyses conducted at five-minute and fifteen-minute 
frequencies to examine time-scale dependencies in liquidity patterns. 

3.2. Liquidity Metrics and Measurement Approaches 

Measuring market liquidity requires a multidimensional approach capturing various aspects of market quality. This study 
implements a comprehensive set of liquidity metrics reflecting different dimensions of market liquidity as established in 
the literature. Peterson and Zhang[9] emphasize the importance of combining spread-based and depth-based measures 
to capture the full spectrum of liquidity characteristics. Drawing on their framework, we compute the following metrics 
for each stock at one-minute intervals: 

The analysis employs both transaction cost indicators and order book depth measures. Transaction cost indicators include 
quoted bid-ask spread (QBAS), effective spread (ES), realized spread (RS), and price impact (PI). Order book depth 
measures include depth at best quotes (DBQ), cumulative depth at five levels (CD5), order book slope (OBS), and XLM 
cost of round-trip transactions for standardized sizes. 

Table 4: Descriptive Statistics of Liquidity Metrics Across Markets 

Market Statistic QBAS (bps) ES (bps) PI (bps) DBQ ($M) CD5 ($M) OBS (×10⁻⁴) 

NYSE Mean 6.24 5.38 2.16 0.84 4.37 3.19 

NYSE Median 4.87 4.19 1.73 0.65 3.81 2.94 

NYSE Std. Dev. 4.92 4.33 1.95 0.75 2.98 1.83 

NASDAQ Mean 5.87 5.12 2.34 0.72 3.96 3.87 

NASDAQ Median 4.65 4.08 1.98 0.58 3.42 3.21 

NASDAQ Std. Dev. 4.63 4.17 1.89 0.61 2.57 2.13 

LSE Mean 10.38 8.62 3.47 0.31 2.14 5.28 

LSE Median 8.27 7.14 2.95 0.24 1.76 4.87 

LSE Std. Dev. 7.93 6.82 2.41 0.28 1.84 2.54 

TSE Mean 9.54 8.17 3.29 0.27 1.93 6.12 

TSE Median 7.89 6.92 2.87 0.21 1.62 5.82 
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TSE Std. Dev. 7.24 6.41 2.35 0.25 1.68 2.68 

HKEX Mean 14.26 12.54 5.17 0.18 1.42 7.95 

HKEX Median 12.31 10.86 4.58 0.14 1.17 7.24 

HKEX Std. Dev. 9.73 8.45 3.86 0.16 1.04 3.76 

Figure 1 illustrates the intraday patterns of quoted bid-ask spreads across the five markets, normalized by daily averages 
to facilitate visual comparison. 

Figure 1: Normalized Intraday Patterns of Quoted Bid-Ask Spreads Across Global Markets 

 

Figure 1 employs a multi-panel visualization technique with market-specific patterns displayed as continuous curves 
with confidence bands. The x-axis represents standardized trading hours (from market open to close) to enable cross-
market comparison despite different trading hour structures. The y-axis shows the ratio of minute-level spreads to daily 
average values, highlighting relative liquidity variations throughout the trading day. The visualization incorporates a 
color-coded heatmap background reflecting trading intensity (number of transactions per minute) to demonstrate the 
relationship between trading activity and spread tightness. Regional overlays group markets by geographic proximity, 
revealing common patterns within Asia-Pacific markets versus North American and European markets. 

To address market-specific structural differences and enable meaningful cross-market comparisons, we implement the 
normalization methodology proposed by Lee and Martinez[10]. Their approach accounts for differences in tick sizes, 
trading volumes, and market structures through market-specific scaling factors derived from long-term liquidity 
averages. 

Figure 2 presents a comparative analysis of normalized liquidity metrics across markets, revealing both commonalities 
and market-specific characteristics in intraday patterns. 
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Figure 2: Cross-Market Comparison of Multiple Liquidity Dimensions 

 

Figure 2 utilizes a radar chart matrix visualization with five axes representing different liquidity dimensions (quoted 
spread, effective spread, depth at best quotes, order book slope, and price impact). Each market is represented by a 
colored polygon, with distance from center indicating relative liquidity (farther from center represents higher liquidity). 
The visualization presents separate radar charts for four distinct trading periods: market opening (first hour), midday 
trading, pre-closing period, and closing auction. This multi-dimensional representation allows simultaneous comparison 
of all liquidity facets across markets and trading periods, revealing how different dimensions of liquidity evolve 
throughout the trading day in each market. 

3.3. Empirical Models and Statistical Framework 

The empirical analysis employs several complementary methodological approaches to examine intraday liquidity 
patterns and their implications for market risk assessment. The foundation of our analytical framework builds on 
methodologies developed by Wilson and Thompson[11], who pioneered techniques for incorporating high-frequency 
liquidity metrics into market risk models. 

To characterize intraday liquidity patterns, we implement a fixed-effects panel regression model with flexible time-of-
day indicators: 

L_{i,t,m} = α_i + ∑_{j=1}^{24} β_j TOD_{j,t} + γ X_{i,t,m} + δ_d DOW_d + θ_m MON_m + ε_{i,t,m} 

Where L_{i,t,m} represents the liquidity measure for stock i at time interval t in market m, TOD_{j,t} denotes time-of-
day indicator variables for 15-minute intervals, X_{i,t,m} captures stock-specific control variables including return 
volatility and trading volume, DOW_d represents day-of-week fixed effects, and MON_m accounts for monthly 
seasonality. 

For analyzing cross-market liquidity dynamics, we implement a vector autoregression (VAR) model with exogenous 
variables: 

L_t = A + ∑_{k=1}^{p} B_k L_{t-k} + C X_t + ε_t 

Where L_t represents a vector of market-level liquidity measures across the five markets at time t, L_{t-k} denotes 
lagged liquidity vectors, X_t captures exogenous variables including market-wide volatility indicators and 
macroeconomic announcement dummies, and p represents the optimal lag order determined by information criteria. 



The Artificial Intelligence and Machine Learning Review  

[90] 

Figure 3 presents impulse response functions derived from the VAR model, illustrating liquidity spillover effects across 
markets. 

Figure 3: Liquidity Spillover Effects Across Global Equity Markets 

 

Figure 3 displays a 5×5 matrix of impulse response function plots showing the response of each market's liquidity 
(represented in rows) to shocks in other markets' liquidity (represented in columns). Each individual plot shows the 
estimated response function (solid line) with 95% confidence bands (shaded area) over a 60-minute horizon following 
the initial shock. The magnitude of responses is standardized to enable cross-market comparison. The diagonal elements 
represent own-market persistence of liquidity shocks, while off-diagonal elements capture cross-market spillover effects. 
A heat-scale color mapping indicating statistical significance overlays the matrix, with darker colors representing 
stronger and more significant relationships. The visualization includes marginal bar charts summarizing the cumulative 
impact of each market on others and its sensitivity to external shocks. 

To assess the implications of intraday liquidity patterns for market risk, we augment standard GARCH models with 
liquidity factors: 

σ²_{i,t+1} = ω + α ε²_{i,t} + β σ²_{i,t} + γ₁ L_{i,t} + γ₂ (L_{i,t} × I_{i,t}) 

Where σ²_{i,t+1} represents the conditional variance, ε²_{i,t} denotes squared returns, L_{i,t} captures liquidity 
conditions, and I_{i,t} is an indicator variable for high volatility regimes, allowing for state-dependent effects of liquidity 
on market risk. 

 4. Empirical Results and Analysis 

4.1. Characterization of Intraday Liquidity Dynamics Across Markets 

The analysis of intraday liquidity patterns reveals pronounced temporal structures across all examined markets. Table 5 
presents the estimated coefficients from the fixed-effects panel regression model for quoted bid-ask spreads, with time-
of-day indicators grouped into hourly intervals for clarity. The results demonstrate statistically significant time-of-day 
effects across all markets, with the magnitude and timing of these effects varying substantially across different market 
structures. 

Table 5: Time-of-Day Effects on Quoted Bid-Ask Spreads Across Markets 
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Time 

Interval 

NYSE Coef. (t-

stat) 

NASDAQ Coef. (t-

stat) 

LSE Coef. (t-

stat) 

TSE Coef. (t-

stat) 

HKEX Coef. (t-

stat) 

Opening 

Hour 
0.452 (14.28)*** 0.417 (12.95)*** 0.328 (9.87)*** 

0.387 

(11.24)*** 
0.492 (13.76)*** 

Second Hour 0.148 (5.32)*** 0.132 (4.98)*** 0.124 (4.56)*** 0.196 (6.83)*** 0.213 (7.24)*** 

Mid-Day 0.037 (1.42) 0.028 (1.17) 0.052 (2.08)** 0.075 (2.84)*** 0.089 (3.12)*** 

Pre-Close 

Hour 
0.187 (6.94)*** 0.162 (5.87)*** 0.237 (8.32)*** 0.184 (6.57)*** 0.265 (8.79)*** 

Closing 

Period 
0.384 (12.76)*** 0.357 (11.83)*** 

0.312 

(10.42)*** 

0.348 

(11.05)*** 
0.426 (12.98)*** 

Note: ***, **, * indicate significance at 1%, 5%, and 10% levels, respectively 

The results confirm the characteristic U-shaped pattern in bid-ask spreads, with elevated spreads during market opening 
and closing periods. As noted by Morgan and Taylor[12], this pattern reflects information asymmetry during market 
opening when overnight information is incorporated into prices, and inventory management constraints during market 
closing when market makers reduce risk exposure. The magnitude of the opening effect is particularly pronounced in 
the HKEX market, with a coefficient of 0.492, indicating spreads approximately 49.2% higher than the mid-day reference 
level[18][19]. 

Figure 4 visualizes the intraday patterns of four key liquidity metrics across the five markets, normalized by their 
respective daily averages to facilitate cross-market comparison. 

Figure 4: Intraday Evolution of Multiple Liquidity Dimensions Across Markets 
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Figure 4 employs a multi-panel visualization approach with separate panels for each liquidity metric (quoted spread, 
effective spread, depth at best quotes, and order book slope). Each panel presents market-specific patterns as continuous 
curves with line styles and colors uniquely identifying each market. The x-axis represents standardized trading hours (in 
15-minute intervals from open to close), while the y-axis shows each metric as a ratio to its daily average value. 
Confidence bands (±1 standard error) surround each curve, with narrower bands indicating more stable patterns. The 
visualization includes inset density plots showing the distribution of each metric by market, with vertical lines marking 
the median values. Shaded vertical regions highlight common trading periods with elevated spreads and reduced depth 
across multiple markets. 

Consistent with findings by Chen and Lopez[13], market opening periods exhibit substantially wider spreads and 
shallower depth compared to mid-day trading across all markets. The magnitude of these effects varies significantly 
across markets, with emerging markets exhibiting more pronounced liquidity deterioration during opening and closing 
periods[20]. Table 6 quantifies these differences through a comparison of maximum-to-minimum ratios for key liquidity 
metrics across trading sessions. 

Table 6: Maximum-to-Minimum Ratios of Liquidity Metrics Across Trading Sessions 

Market Quoted Spread Ratio Effective Spread Ratio Depth Ratio Order Book Slope Ratio 

NYSE 2.84 2.53 3.12 2.41 

NASDAQ 2.67 2.38 2.95 2.36 

LSE 2.31 2.17 2.78 2.05 

TSE 3.24 2.92 3.87 2.74 

HKEX 3.68 3.41 4.12 3.16 

The temporal stability of intraday patterns varies substantially across markets and time periods. NYSE and NASDAQ 
exhibit highly consistent patterns across normal trading days, while emerging markets show greater day-to-day variation 
in intraday liquidity profiles. Benson and Wright[14] suggest that this variability reflects differences in market participant 
composition and algorithmic trading penetration, with more developed markets demonstrating more stable liquidity 
provision mechanisms. 

4.2. Cross-Market Comparative Analysis of Liquidity Patterns 

The comparative analysis of liquidity patterns across markets reveals both commonalities in temporal structures and 
significant differences in magnitude and timing. Table 7 presents the correlation matrix of time-matched liquidity 
measures across markets, highlighting the degree of liquidity co-movement. 

Table 7: Cross-Market Correlation Matrix of Standardized Liquidity Measures 

Market NYSE NASDAQ LSE TSE HKEX 

NYSE 1.000 0.832 0.524 0.312 0.287 

NASDAQ 0.832 1.000 0.486 0.294 0.265 

LSE 0.524 0.486 1.000 0.385 0.327 
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TSE 0.312 0.294 0.385 1.000 0.518 

HKEX 0.287 0.265 0.327 0.518 1.000 

Note: Correlations based on standardized quoted bid-ask spreads at 15-minute intervals, averaged across constituent 

stocks 

The results reveal substantial liquidity co-movement within geographic regions, with the highest correlation (0.832) 
observed between NYSE and NASDAQ. Cross-regional correlations are notably weaker, with coefficients ranging from 
0.265 to 0.524[21][22]. These patterns align with findings from Nakajima and Wilson[15], who documented regional 
liquidity commonality driven by shared trading hours, overlapping market participants, and common market structures. 

Principal component analysis of standardized liquidity metrics reveals significant market-specific factors. Table 8 
presents the factor loadings for the first three principal components extracted from the five-market liquidity panel. 

Table 8: Principal Component Analysis of Cross-Market Liquidity Dynamics 

Market PC1 Loading PC2 Loading PC3 Loading Communality 

NYSE 0.785 0.428 -0.124 0.814 

NASDAQ 0.762 0.451 -0.147 0.802 

LSE 0.635 0.115 0.642 0.821 

TSE 0.412 -0.698 0.172 0.678 

HKEX 0.384 -0.732 0.184 0.710 

Variance Explained 48.2% 24.7% 12.5% 85.4% (Total) 

The analysis identifies three significant principal components explaining 85.4% of total variation in cross-market 
liquidity. The first component loads most heavily on developed markets, particularly NYSE and NASDAQ, representing 
global liquidity conditions[23]. The second component primarily contrasts Western markets with Asian markets, capturing 
regional liquidity factors. The third component isolates European market dynamics, with the highest loading on the LSE. 

Figure 5 visualizes the cross-market spillover effects identified through impulse response analysis of the VAR model. 

Figure 5: Directed Network of Cross-Market Liquidity Spillover Effects 
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Figure 5 presents a directed network visualization of liquidity spillover effects across markets. Nodes represent 
individual markets with size proportional to market capitalization, and edges represent statistically significant spillover 
effects with width proportional to magnitude and direction indicated by arrows. Edge colors represent the speed of 
transmission with a gradient from red (immediate impact) to blue (delayed impact). The layout employs a force-directed 
algorithm positioning markets with stronger interconnections closer together. Surrounding the main network are time-
series plots showing the impulse response functions for the strongest spillover relationships, with confidence bands 
indicating estimation uncertainty. Overlaid on the network is a heat-coded matrix showing the cumulative impact 
magnitude across all markets. 

The analysis reveals asymmetric spillover effects, with developed markets exerting stronger influence on emerging 
markets than vice versa. This asymmetry aligns with findings by Rodriguez and Thompson[16], who documented 
dominant information flows from developed to emerging markets in their analysis of cross-border trading dynamics[24]. 

4.3. Implications for Market Risk Assessment and Prediction 

The integration of intraday liquidity metrics into market risk assessment frameworks yields substantial improvements in 
risk forecasting accuracy. Table 9 presents comparative results from standard GARCH models versus liquidity-
augmented models for one-day-ahead volatility forecasts. 

Table 9: Comparative Performance of Risk Forecasting Models 

Market Model MAE RMSE QLIKE MZ-R² DM-test 

NYSE Standard GARCH 0.218 0.342 0.287 0.624 - 

NYSE Liquidity-GARCH 0.184 0.297 0.243 0.718 3.84*** 

NASDAQ Standard GARCH 0.243 0.368 0.312 0.587 - 

NASDAQ Liquidity-GARCH 0.204 0.326 0.274 0.679 3.62*** 

LSE Standard GARCH 0.197 0.325 0.264 0.597 - 

LSE Liquidity-GARCH 0.173 0.291 0.231 0.652 2.97*** 

TSE Standard GARCH 0.228 0.357 0.302 0.549 - 

TSE Liquidity-GARCH 0.198 0.318 0.265 0.621 3.15*** 

HKEX Standard GARCH 0.257 0.392 0.335 0.518 - 

HKEX Liquidity-GARCH 0.212 0.341 0.287 0.604 3.93*** 

Note: MAE (Mean Absolute Error), RMSE (Root Mean Squared Error), QLIKE (Quasi-likelihood loss function), MZ-
R² (Mincer-Zarnowitz R-squared), DM-test (Diebold-Mariano test statistic comparing forecast accuracy) 

***, **, * indicate significance at 1%, 5%, and 10% levels, respectively 

The liquidity-augmented GARCH models demonstrate consistent improvements in forecast accuracy across all markets 
and evaluation metrics. The improvement magnitude ranges from 12-18% reduction in forecast errors, with the largest 
gains observed in emerging markets where liquidity dynamics exhibit greater variability. These results support the 
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findings of Kumar and Chen[17], who documented similar improvements through the incorporation of liquidity factors 
in risk prediction models. 

Figure 6 illustrates the state-dependent relationship between liquidity conditions and volatility persistence, highlighting 
the risk amplification effects of liquidity constraints. 

Figure 6: State-Dependent Relationship Between Liquidity and Volatility Persistence 

 

Figure 6 employs a three-dimensional surface plot to visualize the relationship between liquidity conditions (x-axis), 
market returns (y-axis), and volatility persistence (z-axis, represented by surface height and color intensity). The plot 
incorporates contour lines on the base to highlight regions of equal volatility persistence. The visualization is constructed 
from estimated coefficients of state-dependent GARCH models, allowing comparison of volatility response to return 
shocks under different liquidity conditions. Overlaid on the surface are scattered points representing actual market 
observations, with point size proportional to trading volume. Marginal plots show the projected relationships in two 
dimensions, with regression lines and confidence bands. The visualization clearly demonstrates elevated volatility 
persistence during periods of market stress combined with liquidity constraints. 

The differential impact of liquidity constraints across market regimes holds important implications for risk management 
practices. As noted by White and Jackson[18], conventional risk models substantially underestimate tail risk during 
periods of liquidity contraction. Our analysis quantifies this relationship, showing that incorporation of liquidity factors 
improves Value-at-Risk estimates particularly for the lower tail of the return distribution[25]. The largest improvements 
occur precisely when accurate risk assessment is most critical—during periods of market stress characterized by 
deteriorating liquidity conditions. 

5. Conclusions and Implications 

5.1. Summary of Key Findings 

This research examined intraday liquidity patterns across global equity markets and assessed their implications for 
market risk evaluation. The empirical analysis revealed pronounced U-shaped patterns in bid-ask spreads across all 
examined markets, with significantly elevated spreads during market opening and closing periods. These patterns 
demonstrated remarkable persistence across normal trading conditions while exhibiting amplified dynamics during 
periods of market stress. Cross-market analysis identified substantial regional commonality in liquidity dynamics, with 
the highest correlations observed between markets within the same geographic region. Principal component analysis 
revealed three dominant factors driving global liquidity variation: a global factor primarily associated with developed 
markets, a regional factor differentiating Western and Asian markets, and a European-specific factor[26]. The analysis of 
spillover effects documented asymmetric transmission mechanisms, with developed markets exerting stronger influence 
on emerging markets than vice versa. The temporal alignment of trading hours emerged as a critical determinant of cross-
market spillover magnitude, with overlapping trading hours facilitating more pronounced liquidity transmission[27]. 

5.2. Practical Applications for Risk Management Professionals 
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The findings from this study offer several practical implications for risk management professionals. The documented 
intraday patterns in liquidity metrics provide valuable guidance for optimal trade execution timing, particularly for large 
institutional orders where market impact considerations are paramount. Trading algorithms can be calibrated to account 
for systematic intraday liquidity variations, potentially reducing transaction costs and minimizing market impact. The 
incorporation of high-frequency liquidity metrics into market risk models yields substantial improvements in forecast 
accuracy, with gains ranging from 12-18% across markets. These improvements are particularly pronounced during 
periods of market stress, when conventional risk models tend to underestimate tail risk. Risk managers can enhance 
Value-at-Risk estimates by incorporating liquidity factors, especially for portfolios with significant positions in less 
liquid assets or markets. The differential impact of liquidity constraints across market regimes highlights the importance 
of stress testing frameworks that explicitly model the liquidity-volatility nexus. Intraday risk monitoring systems can be 
enhanced by incorporating real-time liquidity metrics, potentially providing early warning signals of liquidity 
deterioration before they manifest in price volatility. 

5.3. Limitations and Future Research Directions 

This study faces several limitations that present opportunities for future research. The analysis focused exclusively on 
equity markets, limiting generalizability to other asset classes with potentially different liquidity formation processes. 
While five major global markets were examined, the sample excludes many emerging and frontier markets where 
liquidity constraints may be more binding. The five-year sample period encompasses relatively stable market conditions 
with limited stress episodes, potentially underrepresenting the behavior of liquidity-risk relationships during extended 
crisis periods. The methodological approach relies on standard liquidity metrics that may not fully capture all dimensions 
of market quality, particularly during stress periods when limit order book dynamics become highly non-linear. 
Alternative liquidity measures incorporating order flow toxicity or adverse selection costs could provide additional 
insights. The empirical models account for contemporaneous relationships between liquidity and volatility but may not 
fully capture complex feedback mechanisms operating at higher frequencies. Future research could explore network 
models of global liquidity dynamics, non-linear threshold effects in liquidity-volatility relationships, and machine 
learning approaches to identify complex patterns in high-dimensional liquidity data. 
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