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LED reliability This research presents a comprehensive framework for artificial intelligence-
prediction, machine driven reliability prediction and quality control algorithms specifically
learning algorithms, designed for medical-grade LED devices. The study addresses critical
medical device quality challenges in medical LED reliability assessment through hybrid machine
control, predictive learning approaches that combine physics-informed neural networks with
maintenance advanced anomaly detection systems. Our methodology integrates multi-

parameter health indicators, real-time monitoring capabilities, and predictive
maintenance algorithms to achieve reliable remaining-life prediction with a
3.2% mean absolute percentage error (MAPE) while reducing required
qualification testing from approximately 6,000 hours to about 1,500 hours
(=75% reduction). The proposed framework is designed to align with U.S. FDA
Quality System Regulation (21 CFR Part 820) principles and common
infection control objectives in healthcare environments, supporting safer
deployment of LED-based medical devices in healthcare facilities.
Implementation results demonstrate significant improvements in device
lifetime prediction, quality control efficiency, and operational cost reduction,
advancing both technological innovation and public health safety standards in
American healthcare systems.

1. Introduction

1.1 Research Background

Medical-grade LED devices have become integral components in modern healthcare infrastructure, spanning
applications from surgical lighting and photobiomodulation therapy to UV-C disinfection systems and diagnostic
imaging equipment. The critical nature of these applications demands unprecedented reliability standards that current
testing methodologies struggle to achieve efficiently. Traditional reliability assessment protocols, primarily based on
LM-80 and TM-21 standards, require extensive testing periods exceeding 6,000 hours while limiting predictive
extrapolation capabilities to merely six times the test duration. This constraint creates significant bottlenecks in medical
device qualification processes, delaying the deployment of innovative LED technologies in healthcare settings.

The convergence of artificial intelligence with semiconductor reliability physics presents transformative opportunities
for addressing these limitations. Recent advancements in machine learning algorithms, particularly in deep neural
networks and Bayesian inference methods, enable the accurate prediction of degradation using limited early-stage data.
These algorithmic innovations align directly with the U.S. Department of Energy's initiative for sustainable healthcare
facilities and the FDA's evolving framework for Al-enabled medical devices. The integration of Al-driven approaches
not only accelerates device qualification but also enhances compliance with emerging regulatory requirements for
algorithmic transparency and data traceability in medical applications.

1.2 Research Objectives

This research aims to develop and validate a comprehensive Al-driven framework for predicting medical LED reliability
and quality control, addressing both technological advancement needs and regulatory compliance requirements. The
primary objective is to establish hybrid machine learning architectures that integrate physics-based degradation models
with data-driven pattern recognition to achieve superior prediction accuracy while maintaining the interpretability
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essential for medical device certification. The framework specifically targets reducing qualification testing duration from
traditional 6,000+ hours to about 1,500 hours (=75% reduction) while improving prediction accuracy beyond current
industry standards.

The secondary objectives focus on developing multi-parameter health indicators that synthesize electrical, thermal, and
optical measurements into composite reliability metrics suitable for real-time monitoring in deployed medical devices.
This approach enables predictive maintenance strategies that prevent unexpected failures in critical healthcare
applications while optimizing operational efficiency. The research additionally addresses the need for uncertainty
quantification in Al predictions, providing confidence bounds essential for safety-critical medical applications.

Through alignment with FDA medical device quality systems and CDC infection control strategies, this work contributes
to strengthening the technological foundation for the domestic manufacturing of high-performance medical LEDs,
advancing U.S. competitiveness in medical device innovation, and aligning with national supply-chain resilience goals.
This work addresses critical operational needs in U.S. healthcare settings, including hospital infection control, intelligent
UV-C disinfection scheduling, and predictive maintenance of surgical lighting and phototherapy systems, with the goal
of improving patient safety, reducing unplanned downtime, and lowering the cost of clinical engineering support.

2. Related Work

2.1 LED Reliability Prediction Methods

A. Traditional Statistical Approaches

Statistical reliability modeling for LED devices has historically relied on accelerated life testing combined with
extrapolation techniques based on empirical degradation models. Yi et al. ! modeled temperature behavior in display
lighting modules, illustrating how thermal stress prediction can support downstream reliability analysis. We adapt this
idea to high-power medical LED assemblies, which experience more stringent duty cycles. These traditional methods
typically employ Arrhenius relationships for temperature acceleration and inverse power law models for current stress
factors. The exponential decay model remains widely used for predicting lumen maintenance, although its accuracy
diminishes significantly when extrapolating beyond the tested conditions.

Sutharssan et al. ! conducted comprehensive prognostics studies on high-power LEDs, revealing that junction

temperature variations of merely 10°C can alter device lifetime by factors exceeding two. Their analysis of catastrophic
and degradation failure mechanisms identified wire bond fatigue, die attach delamination, and phosphor degradation as
primary failure modes requiring distinct modeling approaches. The limitations of purely statistical methods become
apparent when addressing multiple concurrent degradation mechanisms, particularly in medical applications where both
gradual light output decay and sudden catastrophic failures pose significant risks.

B. Machine Learning Algorithms

Machine learning approaches have revolutionized LED reliability prediction by capturin% complex nonlinear
relationships that traditional statistical models cannot adequately represent. Belloni and Gértner ! explored challenges
specific to medical LED applications, highlighting that adaptive, nonlinear models are better suited than simple linear
regression to capture temperature- and current-dependent degradation behavior in diagnostic and therapeutic devices.
The evolution toward deep learning architectures has enabled unprecedented prediction accuracy by automatically
extracting features from high-dimensional sensor data. Kuo et al. I developed automated inspection systems for surface
mount LED devices, achieving defect detection rates of 98.7% using convolutional neural networks combined with
morphological image processing. These advances in pattern recognition directly translate to the identification of
degradation signatures, enabling early failure detection during initial operational periods. The integration of recurrent
neural networks, particularly Long Short-Term Memory (LSTM) architectures, has proven especially effective for
modeling time-series degradation, capturing temporal dependencies that static models often overlook.

2.2 Quality Control in Medical LED Manufacturing

A. Automated Optical Inspection

Automated optical inspection systems have emerged as critical quality control tools in medical LED manufacturing,
replacing subjective manual inspection with objective, reproducible measurements. Ibrahim et al. [! presented
comprehensive frameworks integrating machine learning with digital twin concepts for LED degradation analysis,
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demonstrating how real-time inspection data feeds predictive models for enhanced reliability assessment. Their approach
combines high-resolution imaging with spectral analysis to detect microscopic defects that are invisible to conventional
inspection methods, achieving defect identification accuracies exceeding 96% for critical parameters that affect medical
device performance.

Liao et al. [® established guidelines for AOI system development, emphasizing the importance of multi-angle
illumination and adaptive thresholding algorithms for medical-grade component inspection. Their systematic approach
to lighting configuration, camera positioning, and image processing pipeline design ensures consistent defect detection
across varying LED package types and substrate materials. The integration of these inspection systems with
manufacturing execution systems enables real-time quality tracking and the implementation of immediate corrective
actions.

B. Real-time Monitoring Systems

Real-time monitoring capabilities represent a paradigm shift from periodic inspection to continuous quality assurance
throughout the manufacturing process. Meneghini et al. ! analyzed reliability design choices in high-power LEDs,
emphasizing the need for continuous monitoring under realistic operating stress. We build on that motivation and
implement a low-latency monitoring layer that runs on embedded hardware.The implementation of edge computing
architectures enables sophisticated algorithms to operate directly on production equipment, reducing latency and
allowing for immediate responses to detected anomalies.

Abd Al Rahman and Mousavi ¥ conducted extensive reviews of automatic optical inspection methods in electronics
manufacturing, identifying key technological trends toward intelligent, adaptive systems. Their analysis revealed that
hybrid inspection approaches combining rule-based algorithms with machine learning classifiers achieve an optimal
balance between detection sensitivity and false positive rates. The evolution toward Industry 4.0 manufacturing
paradigms necessitates inspection systems capable of self-optimization through continuous learning from production
data streams.

3. Methodology

3.1 Hybrid Machine Learning Framework

The proposed hybrid machine learning framework integrates physics-informed neural networks with empirical
degradation models to leverage both domain knowledge and data-driven insights. The architecture consists of parallel
processing streams: a physics branch that encodes Arrhenius temperature dependencies and power-law current
relationships, and a data branch that employs deep neural networks for pattern extraction from sensor measurements.
The physics branch implements governing equations for LED degradation mechanisms, including junction temperature
evolution, carrier recombination dynamics, and phosphor thermal quenching effects. These equations constrain the
solution space, preventing physically impossible predictions while reducing training data requirements by approximately
40% compared to purely data-driven approaches.

The data branch utilizes a multi-layer perceptron architecture with batch normalization and dropout regularization to
process high-dimensional sensor inputs, including forward voltage, drive current, case temperature, and spectral
distribution measurements. The network architecture comprises six hidden layers with [512, 256, 128, 64, 32, 16]
neurons respectively, employing rectified linear unit activation functions. Training employs adaptive moment estimation
optimization with learning rate scheduling, reducing from an initial value of 0.001 to a final value of 0.0001 over 500
epochs. The physics and data branches merge through a gated fusion mechanism that dynamically weights contributions
based on prediction uncertainty estimates.

Table 1. Hybrid Model Architecture Parameters

Component Configuration Performance Impact

Physics Branch Layers 4 dense layers (64, 32, 16, 8 15% reduction in prediction error
neurons) versus data-only baseline

Data Branch Layers gzdeln 6s)e layers (512, 256, 128, 64, R2=0.985 on validation data
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12% reduction in predictive
Fusion Mechanism Attention-weighted gate (learned) uncertainty relative to either
branch alone

Dropout Rate 0.3 (training), O (inference) 8% overfitting reduction
Batch Size 64 samples Optimal convergence speed

Learning Rate Schedule ]g)(c)%%lie;ntial decay (0.001 to 23% faster convergence

Model validation employs k-fold cross-validation with k=10 to ensure generalization across diverse LED types and
operating conditions. The online safety layer processes sensor streams at 100 Hz with sub-10 ms inference latency to
detect abnormal operating conditions in near real time. Integration with existing manufacturing execution systems is
achieved through RESTful APIs that support JSON data exchange formats. The hybrid architecture achieves mean
absolute percentage errors of 3.2% for lifetime prediction using only 1,500 hours of accelerated test data, representing a
75% reduction in required testing duration compared to traditional TM-21 extrapolation methods.

3.2 Multi-parameter Health Indicator Development

The two layers serve different purposes. The online safety layer is designed for immediate anomaly alerting and operator
notification; it does not automatically shut down devices. The offline maintenance layer supports the scheduling of
preventive services and qualification planning.

A. Feature Engineering

Feature engineering transforms raw sensor measurements into informative representations capturing degradation
signatures across multiple physical domains. The methodology extracts 47 distinct features from electrical, thermal, and
optical measurement channels, encompassing both time-domain and frequency-domain characteristics. Electrical
features include forward voltage drift rate, dynamic resistance evolution, and power factor variations calculated over
sliding windows of 100 operational hours. Thermal features comprise junction temperature rise rate, thermal resistance
trends, and case-to-ambient temperature differential patterns. Optical features encompass luminous flux decay rates,
chromaticity coordinate shifts, and spectral power distribution changes, which are quantified through Kullback-Leibler
divergence metrics.

Statistical moment features capture the distribution characteristics of measured parameters, including the evolution of
skewness and kurtosis, which indicate transitions between degradation regimes. Wavelet decomposition extracts multi-
resolution features that reveal degradation patterns at different temporal scales, making it particularly effective for
identifying intermittent failure precursors. Cross-correlation features between electrical and thermal signals detect
changes in coupling strength, which are indicative of package degradation or die attach failures. A separate offline
maintenance layer aggregates operating data over 24-hour windows and updates long-term health indicators and
remaining useful life (RUL) estimates daily.

B. Dimensionality Reduction

Principal component analysis reduces the 47-dimensional feature space to 8 principal components, retaining 95.3% of
total variance while eliminating redundancy and noise. The first principal component correlates strongly with overall
degradation severity, accounting for 42% of the variance. Subsequent components capture specific failure modes:
component 2 represents thermal degradation (18% variance), component 3 indicates optical degradation (14% variance),
and component 4 reflects electrical degradation (9% variance). This decomposition enables targeted monitoring of
distinct degradation mechanisms while reducing computational requirements by 83%.

Autoencoder networks offer nonlinear dimensionality reduction that surpasses PCA for complex degradation patterns.
The encoder architecture compresses 47 features to 8-dimensional latent representations through layers of [47, 32, 16,
8] neurons. The decoder reconstructs original features through symmetric expansion, with reconstruction error serving
as an anomaly score. Training is performed using a mean squared error loss with an 1.2 regularization coefficient of
0.001, resulting in reconstruction errors of less than 2% for normal degradation patterns. Anomalous samples exhibiting
reconstruction errors exceeding 5% trigger detailed inspection protocols.
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Figure 1. Multi-parameter Health Indicator Architecture
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Figure 1 illustrates the complete health indicator development pipeline from raw sensor data to composite reliability
metrics. The visualization displays parallel processing streams for electrical, thermal, and optical measurements,
converging through feature extraction, dimensionality reduction, and weighted fusion stages. Color gradients represent
data flow intensity, with warmer colors indicating higher information content. The diagram emphasizes the hierarchical
structure that enables both component-level and system-level health assessments.

C. Composite Index Construction

Composite health indices synthesize reduced-dimensional features into interpretable scalar metrics that quantify overall
device health. The primary health index employs a weighted linear combination of principal components, with weights
determined through Cox proportional hazards regression against failure time data. Weight optimization minimizes
prediction error for remaining useful life estimation, achieving correlation coefficients of 0.94 with actual failure times.
The composite health index ranges from 1.0 (new device) to 0.0 (functional end-of-life). A value near 0.7 corresponds
to the common L70 lumen maintenance point, which we treat as a ‘maintenance required’ threshold rather than an
immediate functional shutdown.

Secondary indices target specific degradation modes by selectively weighting features. The thermal stress index
emphasizes temperature-related features, providing early warning for thermal management issues. The optical quality
index focuses on spectral stability and color rendering metrics critical for medical imaging applications. The catastrophic
failure index utilizes extreme value theory to estimate the probability of sudden failure based on the frequency of outliers
in electrical measurements. These specialized indices enable condition-based maintenance strategies tailored to specific
failure risks in medical LED deployments.

Table 2. Composite Health Index Performance Metrics

Index Type Correlation with RUL  Early Detection Rate False Positive Rate
Primary Health Index 0.94 89% (< 1000 hrs) 4.2%
Thermal Stress Index 0.87 92% (< 500 hrs) 5.8%
Optical Quality Index 0.91 85% (< 1500 hrs) 3.1%
Catastrophic  Failure ¢ g3 78% (< 2000 hrs) 7.4%
Combined multi-index  0.96 94% (< 800 hrs) 2.9%

3.3 Real-time Anomaly Detection System
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The anomaly detection system employs ensemble methods combining multiple algorithms to achieve robust performance
across diverse failure modes. One-class support vector machines establish normal operation boundaries in feature space,
with radial basis function kernels capturing nonlinear relationships. The kernel bandwidth parameter, ¥ = 0.01, and
outlier fraction, v = 0.05, balance sensitivity and specificity for medical safety requirements. Isolation forests
complement SVMs by identifying anomalies through path length metrics in random tree ensembles, which are
particularly effective for detecting novel failure modes that are absent from the training data.

Siqueira ! demonstrated photobiomodulation applications that require stringent wavelength stability, motivating our
adaptive threshold mechanisms, which adjust detection sensitivity based on the operational context. The system
implements exponentially weighted moving average control charts monitoring multivariate T? statistics, with control
limits automatically calibrated to maintain false alarm rates below 5%. Sequential probability ratio tests evaluate
degradation rate changes, detecting acceleration indicative of impending failure with statistical power exceeding 90% at
a significance level of a =0.01.

Table 3. Anomaly Detection Algorithm Comparison

. Detection . . o
Algorithm Accuracy Processing Time  Memory Usage Interpretability
One-class SVM 91.3% 2.3 ms/sample 45 MB Medium
Isolation Forest 89.7% 1.8 ms/sample 32 MB High
EVMA - Control 4629 0.9 ms/sample 12 MB Very High
Igiggnco der 93.5% 3.1 ms/sample 78 MB Low
Ensemble Method  95.8% 4.2 ms/sample 95 MB Medium

Real-time implementation leverages edge computing architectures, deploying trained models on embedded processors
adjacent to LED devices. The system processes sensor data streams at a 100 Hz sampling rate, maintaining sliding
windows of 1,000 samples to provide temporal context. Anomaly scores are aggregated across ensemble members
through weighted voting, with weights proportional to the individual algorithm’s performance on validation datasets.
Detection events trigger graduated responses, including logging for minor anomalies, alerts for moderate anomalies, and
the system issues high-priority service alerts for severe anomalies that could affect patient safety, enabling manual
intervention by clinical engineering staff.

Figure 2. Real-time Anomaly Detection Performance
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Figure 2 summarizes receiver operating characteristic curves across anomaly detection methods. The ensemble method
achieves an AUC of 0.97, whereas individual algorithms achieve AUCs ranging from 0.89 to 0.94, indicating that
ensembling improves the sensitivity — specificity tradeoff. Operating points optimized for medical safety requirements
are marked with diamonds, striking a balance between sensitivity and specificity.

4. Results and Discussion

4.1 Algorithm Performance Evaluation

A comprehensive evaluation of 10,000 medical LED samples from five manufacturers reveals that the hybrid machine
learning framework achieves a mean absolute percentage error of 3.2% for lifetime prediction using 1,500 hours of
accelerated aging data. This reduces the required qualification testing from approximately 6,000 hours to about 1,500
hours, corresponding to a roughly 75% reduction compared to traditional TM-21 style long-duration testing. The physics-
informed constraints reduce prediction variance by 45%, which is particularly beneficial when extrapolating beyond the
training data ranges. Jandczki et al. ['! emphasized the importance of systematic validation in optical inspection systems,
motivating our rigorous cross-validation protocol across diverse LED technologies, including phosphor-converted white,
RGB multi-chip, and UV-C configurations.

Algorithm convergence analysis demonstrates stable training within 500 epochs for datasets exceeding 50,000 samples,
with validation loss plateauing at 0.0012 MSE. The hybrid architecture exhibits superior generalization compared to
pure neural networks, maintaining performance degradation below 8% when transferred to previously unseen LED types.
Computational efficiency analysis reveals inference times of 4.2 milliseconds per prediction on standard industrial
computers, enabling real-time deployment in manufacturing environments processing 20,000 units daily.

Table 4. Comparative Algorithm Performance Across LED Types

Hybrid ML Traditional TM- Training Hours
LED Type (MAPE) 21 (MAPE) Tmprovement Required
Phosphor White 2.8% 9.4% 70.2% 1,200
RGB Multi-chip 3.5% 11.2% 68.8% 1,500
UV-C (275nm) 3.9% 13.7% 71.5% 1,800
High-Power COB  2.4% 8.6% 72.1% 1,000
Medical Imaging 3.1% 10.3% 69.9% 1,400
Surgical Lighting ~ 2.9% 9.8% 70.4% 1,300

The multi-parameter health indicator framework successfully identifies 94% of impending failures within 800
operational hours, providing sufficient lead time for preventive maintenance in hospital settings. False positive rates
remain below 3%, minimizing unnecessary interventions that could disrupt medical procedures. The composite indices
demonstrate monotonic degradation trends in 97% of cases, validating their utility for estimating remaining useful life.
Correlation analysis reveals strong relationships between electrical precursors and subsequent optical degradation, with
forward voltage increases of 2% typically preceding 10% lumen depreciation by 200-300 hours.

4.2 Validation with Medical LED Datasets

Validation utilizes datasets from FDA-registered medical LED device classes — including surgical lighting,
phototherapy systems, and UV-C disinfection units — evaluated in pilot environments modeled after their intended use
in healthcare facilities. The surgical lighting dataset comprises 2,500 units monitored over 18 months, experiencing 127
failures, providing ground truth for algorithm validation. The phototherapy system data includes 1,800 devices with
comprehensive spectral measurements, which are critical for verifying treatment efficacy. UV-C disinfection units
contribute 3,200 samples with accelerated aging under humidity stress conditions representative of hospital
environments.

Performance metrics across medical applications consistently demonstrate accuracy, despite varying operational profiles
and reliability requirements. Surgical lighting applications achieve a 96% correct failure prediction within 500 hours,
which is critical for preventing intraoperative illumination loss. Phototherapy systems maintain wavelength prediction

The Artificial Intelligence and Machine Learning Review
[60]



accuracy within £2 nm, ensuring therapeutic efficacy throughout device lifetime. UV-C disinfection units exhibit 91%
accurate dose delivery estimation, supporting effective pathogen inactivation while minimizing unnecessary energy
consumption, aligning with the Department of Energy's sustainability initiatives.

Figure 3. Validation Results Across Medical LED Applications
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Figure 3 summarizes validation across medical LED categories. Predicted versus observed lifetimes exhibit an R* value
greater than 0.92, with 95% confidence intervals indicating a tight agreement. Error distributions are centered near zero
with standard deviations below 5%, and Bland—Altman-style analyses show no systematic bias across the operating
lifetime. The lower triangular panels present Bland-Altman plots revealing no systematic bias across the operational
lifetime range.

Cross-validation with independent test sets confirms the model's generalization beyond the training conditions. Leave-
one-manufacturer-out validation maintains accuracy within 12% of full training performance, indicating robust feature
learning not overfitted to specific device characteristics. Temporal validation using rolling window approaches
demonstrates stable performance as devices age, with prediction accuracy degrading less than 6% over 5,000 operational
hours. These results validate deployment readiness for real-world medical environments that require consistent, long-
term performance.

4.3 Implementation in Healthcare Settings

Evaluated in three pilot environments modeled after surgical lighting, phototherapy, and UV-C disinfection use cases.
The predictive maintenance system reduced unexpected LED failures by 78% over a 12-month period, thereby reducing
the risk of critical lighting interruptions in simulated surgical workflows. An operational cost analysis reveals a 34%
reduction in maintenance expenses through optimized replacement scheduling and effective inventory management.
Energy consumption decreased by 19% through the implementation of intelligent dimming strategies, which maintained
the required illumination while extending device lifetime.

The system is designed to exchange device status summaries through HL7 FHIR - style interfaces and to generate
maintenance work orders for scheduled services. with existing healthcare IT infrastructure. The system generates
automated work orders for predicted failures, schedules maintenance during low-utilization periods, and maintains
comprehensive audit trails supporting FDA 21 CFR Part 820 quality system regulations. Real-time dashboards provide
facility managers with system-wide LED health visibility, enabling them to make proactive resource allocation and
capital planning decisions.
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A regulatory compliance analysis is being developed to map the framework onto FDA Software as a Medical Device
(SaMD) expectations, including documented algorithm validation, change control, and adverse event tracking. through
documented algorithm validation, change control procedures, and adverse event monitoring protocols. The framework
supports the FDA's AI/ML-based medical device framework, emphasizing transparency and continuous learning while
maintaining safety. The implementation of explanation mechanisms enables clinicians and biomedical engineers to
understand the rationale behind predictions, building trust essential for clinical adoption. The UV-C use case is designed
to align with common infection control objectives in healthcare environments. Training requirements for hospital
technical staff average 4 hours for system operation and 16 hours for advanced troubleshooting capabilities. User
acceptance surveys indicate 87% satisfaction rates among biomedical engineering departments, with particular
appreciation for reduced emergency callouts and improved equipment availability metrics. The cloud-based architecture
enables remote monitoring and support, reducing on-site vendor visits by 65% while maintaining service quality.

The cloud-based architecture is designed to comply with HIPAA technical safeguard requirements (encryption, access
control, and audit logging) for device operational data; full security validation is ongoing. through encryption, access
controls, and audit logging mechanisms, protecting device operational data. In particular, the adaptive UV-C LED
disinfection control logic is intended to support the U.S. Centers for Disease Control and Prevention (CDC) objective of
strengthening hospital infection control and environmental hygiene practices by enabling real-time monitoring of
disinfection coverage and consistent dose delivery in clinical-style pilot environments.

5. Conclusion

This research establishes a comprehensive Al-driven framework for predicting medical LED reliability and quality
control, advancing both technological capabilities and regulatory compliance standards. The hybrid machine learning
architecture achieves a 3.2% mean absolute percentage error in lifetime prediction, using only 1,500 hours of test data.
This reduces required qualification testing by ~75% compared to conventional long-duration testing while maintaining
a mean absolute percentage error of 3.2%. The multi-parameter health indicator system successfully identifies 94% of
impending failures within 800 operational hours, enabling proactive maintenance strategies that reduced unexpected
failures by 78% in pilot environments modeled after clinical use. By reducing redundant energy usage during UV-C
disinfection while maintaining antimicrobial effectiveness, the framework supports the U.S. Department of Energy’ s
broader priority of enhancing energy efficiency and sustainability in healthcare facilities, demonstrating combined
economic and public health benefits. Implementation results from three pilot environments, modeled after surgical
lighting, phototherapy, and UV-C disinfection use cases, showed a 34% reduction in maintenance costs and a 19%
reduction in energy consumption, directly supporting the U.S. Department of Energy’s sustainability initiatives for
healthcare facilities.

The framework's alignment with FDA Software as Medical Device guidelines and CDC infection control strategies
positions this technology to strengthen domestic medical LED manufacturing capabilities while enhancing patient safety.
By addressing algorithmic transparency, data traceability, and real-time failure prediction, this work supports the FDA's
evolving policy framework for trustworthy artificial intelligence in medical devices. The validated algorithms provide a
technological foundation for advancing U.S. competitiveness in medical device innovation, contributing to supply chain
resilience goals that align with national healthcare infrastructure priorities. Future research directions include extending
the framework to emerging micro-LED technologies, integrating federated learning for multi-hospital deployments, and
developing standardized validation protocols for Al-based medical device reliability systems. By improving lifetime
prediction, early-failure screening, and quality consistency for medical-grade LED devices, the proposed reliability
framework supports U.S. efforts to strengthen domestic manufacturing capacity for critical healthcare technologies and
reduce vulnerability to foreign component supply disruptions
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