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 Cardiovascular diseases remain the leading cause of mortality worldwide, with 
silent myocardial infarction and paroxysmal atrial fibrillation presenting 
significant diagnostic challenges due to their subtle electrocardiographic 
manifestations. This study proposes a novel multi-scale feature extraction 
method combining residual U-blocks with depthwise separable convolutions 
and attention mechanisms for enhanced detection of these conditions. The 
approach integrates clinical domain knowledge through guided spatial 
attention, emphasizing ST-T segments and high-frequency QRS components 
while preserving prognostic signals during preprocessing. A comprehensive 
evaluation of the MIT-BIH Arrhythmia Database, PTB-XL Database, and 
PhysioNet Challenge 2017 demonstrates 98.7% accuracy for arrhythmia 
classification, 96.4% sensitivity for myocardial infarction detection, and 97.9% 
specificity for atrial fibrillation identification, representing improvements of 
3.2%, 4.1%, and 2.8% over baseline CNN-LSTM architectures. The optimized 
network achieves 58% parameter reduction through efficient convolution 
strategies, enabling deployment on resource-constrained devices. Grad-CAM 
visualization validates clinical relevance by demonstrating focused attention 
on diagnostically significant regions of the ECG. 

1. Introduction 

1.1 Background and Motivation 

Cardiovascular diseases account for approximately 17.9 million deaths annually, representing 31% of global mortality. 
Among these conditions, myocardial infarction and atrial fibrillation constitute critical health threats requiring timely 
identification and intervention. Silent myocardial infarction, characterized by minimal or absent symptoms, comprises 
22-64% of non-fatal myocardial infarctions and demonstrates 43% higher long-term mortality compared to symptomatic 
presentations [1]. This condition presents unique diagnostic challenges, as conventional electrocardiographic changes 
may be subtle or transient, often being dismissed as signal artifacts or normal variants. Paroxysmal atrial fibrillation, 
marked by intermittent episodes of irregular cardiac rhythm, increases stroke risk fivefold yet remains undetected in 
many patients due to its episodic nature [2]. Standard 12-lead electrocardiography serves as the primary non-invasive 
diagnostic tool, but manual interpretation requires specialized expertise and remains susceptible to inter-observer 
variability. 

Recent advances in deep learning have revolutionized electrocardiogram analysis, enabling the automated detection of 
cardiac abnormalities with performance that approaches or exceeds that of human experts [3]. Convolutional neural 
networks extract spatial features from signal morphology, while recurrent architectures capture temporal dependencies 
critical for rhythm analysis. The integration of these approaches has yielded promising results across various 
cardiovascular conditions. Contemporary diagnostic systems face persistent challenges in balancing detection accuracy 
with computational efficiency, which limits their deployment in point-of-care settings and wearable monitoring devices. 
The preservation of high-frequency signal components during preprocessing remains problematic, as conventional 
filtering techniques often eliminate clinically relevant information essential for detecting subtle pathological changes [4]. 
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1.2 Related Work and Research Gaps 

Traditional electrocardiogram analysis relied on hand-crafted features derived from wavelet transforms, entropy 
measures, and statistical descriptors [5]. Arif demonstrated robust beat classification using discrete wavelet transform 
coefficients, achieving 94.2% accuracy across multiple arrhythmia categories [6]. Alexakis et al. employed feature 
extraction techniques combining time-domain and frequency-domain characteristics for specific pathological conditions. 
While effective for well-defined patterns, these methods struggled with subtle abnormalities and required extensive 
domain expertise for feature engineering. 

Deep learning architectures have progressively replaced manual feature extraction. Al Rahhal et al. applied convolutional 
neural networks to electrocardiogram classification, demonstrating superior performance compared to traditional 
machine learning approaches [7]. The architecture learns hierarchical representations directly from raw signals, 
eliminating the need for manual feature design. Venkatesan et al. developed preprocessing pipelines incorporating 
support vector machine classifiers for remote healthcare applications, emphasising practical deployment considerations. 
Liu et al. provided comprehensive reviews of deep learning methodologies in electrocardiogram diagnosis, highlighting 
the rapid evolution from simple architectures to sophisticated multi-modal systems. Recent investigations have explored 
attention mechanisms for emphasising diagnostically relevant signal regions, though most implementations lack 
integration of clinical domain knowledge. 

Critical gaps persist in current methodologies. Standard preprocessing protocols employ aggressive high-frequency 
filtering to remove noise, inadvertently eliminating prognostic information essential for detecting silent myocardial 
infarction. Single-scale feature extraction fails to capture both subtle morphological abnormalities and temporal rhythm 
variations simultaneously. Computational complexity hinders deployment on edge devices and wearable monitors, 
limiting real-world applicability. Most systems operate as black boxes, providing classifications without interpretable 
evidence, which impedes clinical acceptance and regulatory approval. 

2. Methods 

2.1 Dataset Description and Preprocessing 

A. Database Characteristics 

The experimental framework employed three benchmark electrocardiography databases to ensure comprehensive 
evaluation across diverse pathological conditions. The MIT-BIH Arrhythmia Database provided 48 half-hour recordings 
sampled at 360Hz from 47 subjects, containing approximately 110,000 annotated beats distributed across five AAMI 
classes: normal beats, supraventricular ectopic beats, ventricular ectopic beats, fusion beats, and unknown beats [8]. The 
class distribution exhibited a significant imbalance, with normal beats comprising 75% of the dataset, while fusion beats 
represented only 0.8%. The PTB-XL Database comprised 21,837 clinical 12-lead electrocardiogram records from 18,885 
patients, each spanning 10 seconds at a sampling rate of 500Hz. This database included 9,528 myocardial infarction 
cases with detailed localization annotations and 1,514 records exhibiting subtle or ambiguous findings [9]. PhysioNet 
Challenge 2017 contributed 8,528 single-lead ambulatory electrocardiogram recordings categorized into normal sinus 
rhythm, atrial fibrillation, other rhythms, and noisy segments, specifically designed for paroxysmal arrhythmia detection. 

B. Data Augmentation Strategy 

Class imbalance required systematic correction to prevent bias toward majority classes during network training. The 
SMOTE-Tomek hybrid approach generated synthetic minority class samples through interpolation between neighboring 
instances while removing borderline cases that blurred decision boundaries. This technique increased minority class 
representation by 300% while eliminating 12% of ambiguous samples. Random noise injection simulated realistic 
recording conditions by adding Gaussian noise with signal-to-noise ratios ranging from 15 to 25 dB. Baseline wander 
augmentation was applied with sinusoidal drifts at frequencies between 0.15 and 0.3Hz and amplitudes of up to 15% of 
the signal range, replicating respiratory and motion artifacts commonly encountered in ambulatory monitoring. Temporal 
shift augmentation introduced random delays of ±50ms to improve robustness against R-peak detection variability [10]. 
SMOTE-Tomek is applied only to training folds after the inter-patient split; no synthetic or cleaned samples are used in 
validation/test. 

C. Signal Preprocessing Pipeline 
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For myocardial infarction (MI), we adopt dual priors: (i) a QRS-centric window (±50 ms around R-peak) to capture 
pathological Q waves and QRS fragmentation, and (ii) an ST-T window (≈ 60–120 ms after the J-point) to capture 
ST-segment deviation and T-wave abnormalities. Spatial attention is gated by the union of these priors, while remaining 
data-driven [11]. Modified Kalman filtering addressed baseline wander through iterative state estimation, modeling the 
drift as a slowly varying process independent of the cardiac signal. This approach achieved baseline correction without 
introducing phase distortion or amplitude attenuation in diagnostically relevant frequency bands. R-peak detection 
utilized the Pan-Tompkins algorithm enhanced with adaptive thresholding based on local signal statistics. Detected peaks 
served as fiducial points for segmentation, extracting 2.5-second windows centered on each R-peak. Signal 
standardization applied z-score normalization within each lead independently, ensuring zero mean and unit variance. 
Resampling to a uniform 360Hz facilitated consistent temporal resolution across databases while maintaining signal 
fidelity. 

2.2 Proposed Multi-Scale Feature Extraction Architecture 

A. Network Architecture Design 

The proposed network accepts 10-second electrocardiogram segments as input, with dimensionality of (batch_size, 12, 
3600) for 12-lead recordings or (batch_size, 1, 3600) for single-lead data. The initial layer performs temporal expansion 
through 1D convolution with 64 filters of kernel size 7, establishing baseline feature representations. Multi-scale feature 
extraction blocks follow, each containing three parallel branches with receptive fields of 3, 7, and 15 samples, 
corresponding to rapid, intermediate, and gradual electrocardiographic phenomena. Depthwise separable convolutions 
replace standard convolutions within these branches, decomposing the operation into depthwise spatial convolution 
followed by pointwise 1×1 convolution. This factorization reduces the cost from O(Dₖ·M·N) to O (Dₖ·M + M·N) for 
1D convolutions, where Dₖ is kernel length, M input channels, and N output channels. 

B. Attention Mechanism Integration 

Channel attention employs squeeze-and-excitation blocks that capture inter-channel dependencies through global 
average pooling, followed by two fully connected layers with a reduction ratio of r = 16. The attention weights undergo 
sigmoid activation, scaling feature maps according to the importance of each channel. Spatial attention operates 
complementarily, generating attention maps emphasizing diagnostically relevant temporal positions. Guided spatial 
attention incorporates clinical domain knowledge through learnable masks initialized with physiological priors. For atrial 
fibrillation detection, masks emphasize the 100-300ms interval following R-peaks, corresponding to the ST-T segment, 
where nonspecific abnormalities are associated with paroxysmal episodes. For myocardial infarction classification, 
masks highlight the QRS complex spanning ±50ms around detected peaks, where high-frequency components indicate 
damaged myocardium. Multi-head self-attention layers with four heads capture long-range temporal dependencies, 
enabling the network to model relationships between distant electrocardiographic segments. Bidirectional long short-
term memory layers with 64 units process the attended features, maintaining hidden states that encode temporal context. 
The final classification stage employs two fully connected layers with dropout regularization (p = 0.5), culminating in 
softmax activation for multi-class prediction. 

3. Experimental Results 

3.1 Quantitative Performance Analysis 

A. MIT-BIH Arrhythmia Classification 

We adopt a stratified 10-fold inter-patient cross-validation approach: records from the same subject never appear in both 
training and validation/test folds. All splits are performed at the record (subject) level and then propagated to the 
beat/segment level. The proposed architecture achieved an overall classification accuracy of 98.7%, demonstrating 
robust discrimination among diverse beat morphologies. Sensitivity analysis revealed a 99.2% detection rate for normal 
beats, 97.8% for supraventricular ectopic beats, 98.1% for ventricular ectopic beats, 94.3% for fusion beats, and 93.7% 
for unknown beats. The substantial performance on minority classes validated the effectiveness of the SMOTE-Tomek 
augmentation strategy. Specificity exceeded 98.5% across all categories, indicating low false positive rates critical for 
clinical deployment. F1-scores ranged from 94.1% for fusion beats to 99.1% for normal beats, reflecting balanced 
precision and recall. To avoid leakage, all preprocessing and resampling statistics (e.g., normalization) are fit on the 
training fold only and applied to validation/test folds. 
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The confusion matrix analysis identified primary misclassification patterns. Fusion beats exhibited 4.2% confusion with 
ventricular ectopic beats due to morphological similarity during ventricular capture. Unknown beats demonstrated 3.8% 
misclassification as supraventricular ectopic beats, attributable to atypical P-wave configurations. Ventricular ectopic 
beats showed a 1.9% false negative rate, primarily involving interpolated premature ventricular contractions with near-
normal morphology. Receiver operating characteristic curve analysis yielded area under curve values of 0.997 for normal 
beats, 0.989 for supraventricular ectopic beats, 0.992 for ventricular ectopic beats, 0.973 for fusion beats, and 0.968 for 
unknown beats, indicating excellent discriminative capacity across all classes [12]. 

B. PTB-XL Myocardial Infarction Detection 

Myocardial infarction detection on the PTB-XL Database addressed binary classification (normal vs. infarction) and 
multi-class localization (anterior, inferior, lateral walls). Binary classification achieved a sensitivity of 96.4%, a 
specificity of 95.8%, and an overall accuracy of 96.1%. The sensitivity improvement of 4.1% over baseline CNN-LSTM 
architectures directly addressed the critical need for early detection of subtle ischemic changes. Localization performance 
demonstrated 94.7% accuracy for anterior infarctions, 93.2% for inferior infarctions, and 91.8% for lateral infarctions. 
The slightly reduced performance for lateral infarctions reflected the inherent diagnostic challenge of identifying changes 
in lateral leads where amplitude variations are more subtle. 

Analysis of detection latency revealed an average inference time of 47ms per 10-second segment on NVIDIA GTX 1080 
Ti hardware, compatible with real-time monitoring applications. False negative cases predominantly involved small 
infarctions with minimal ST-segment deviation (<0.5mm) or patients with pre-existing left ventricular hypertrophy 
causing baseline ST abnormalities. False positive classifications occurred in 4.2% of left bundle branch block cases, 
where QRS widening and secondary ST-T changes mimicked ischemic patterns. Subgroup analysis stratified by time 
since infarction showed 98.1% sensitivity for acute presentations (<24 hours), 95.8% for recent infarctions (1-7 days), 
and 94.3% for old infarctions (>30 days), demonstrating maintained performance across temporal evolution of 
electrocardiographic changes [13]. 

C. PhysioNet Challenge 2017 Atrial Fibrillation Classification 

On the PhysioNet 2017 dataset, we evaluate the model on 10-s segments (overlap = 50%) with subject-wise splits, 
achieving 97.9% specificity / 96.3% sensitivity / 97.1% F1 score on segments/records. The algorithm correctly identified 
1,627 of 1,689 atrial fibrillation cases, with 62 false negatives primarily occurring in brief paroxysms lasting less than 
30 seconds, where the irregular rhythm was insufficiently pronounced. Specificity performance indicated 98.2% correct 
identification of normal sinus rhythm, with a 1.8% false positive rate, predominantly affecting patients with frequent 
atrial premature beats, which created pseudo-irregular patterns. Other rhythm classification achieved 94.8% accuracy, 
encompassing atrial flutter, supraventricular tachycardia, and various bradycardias. The system rejected 3.2% of 
recordings as excessively noisy, compared to the 6.3% rejection rate of baseline methods, demonstrating improved 
robustness to signal quality degradation. 

Temporal analysis of atrial fibrillation onset detection revealed a median latency of 8.2 seconds from rhythm transition, 
enabling the prompt generation of alerts in monitoring scenarios. The algorithm demonstrated superior performance on 
short atrial fibrillation episodes compared to traditional rate-regularity algorithms, which require longer observation 
windows for reliable classification. Fine-tuning with 10% of PhysioNet samples recovered 96.1% accuracy, 
demonstrating efficient adaptation with limited target-domain data. 

Table 1 presents comprehensive performance metrics across all datasets, enabling direct comparison with established 
benchmarks. The consistent performance superiority across diverse databases and pathological conditions validates the 
robustness and generalizability of the proposed approach. 

Table 1. Classification Performance Across Multiple Databases 

Database Task 
Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

F1-Score 
(%) 

AUROC 

MIT-BIH 
5-Class 
AAMI 

98.7 97.8 98.5 98.1 0.989 

PTB-XL 
MI 
Detection 

96.1 96.4 95.8 96.2 0.982 
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PTB-XL 
MI 
Localization 

93.2 93.8 94.1 93.5 0.967 

PhysioNet 
2017 

AF 
Detection 

97.1 96.3 97.9 97.1 0.991 

PhysioNet 
2017 

Other 
Rhythms 

94.8 94.2 95.3 94.7 0.973 

3.2 Ablation Studies 

Systematic ablation experiments quantified the contributions of individual components by progressively adding 
optimizations to a baseline CNN-LSTM architecture. The baseline network consisted of four convolutional layers with 
standard convolutions, followed by two bidirectional LSTM layers, achieving 95.5% accuracy on the MIT-BIH dataset, 
92.3% sensitivity for myocardial infarction detection, and 95.1% specificity for atrial fibrillation classification. The 
addition of multi-scale ResU blocks improved MIT-BIH accuracy to 96.8%, representing a 1.3 percentage point gain by 
enabling the simultaneous capture of rapid and gradual morphological features. The multi-scale architecture increased 
sensitivity for fusion beat detection from 89.1% to 92.7%, addressing the primary weakness of single-scale approaches. 

The integration of channel and spatial attention mechanisms increased accuracy to 97.9%, contributing an additional 1.1 
percentage points. Attention improved myocardial infarction detection sensitivity from 93.2% to 95.1%, particularly 
benefiting subtle cases with minimal ST-deviation. The decomposition of attention components showed that channel 
attention provided a 0.6 percentage point improvement, while spatial attention contributed 0.5 percentage points, 
indicating complementary benefits. Incorporation of guided spatial attention with clinical domain knowledge masks 
further enhanced myocardial infarction sensitivity to 96.4% and atrial fibrillation specificity to 97.9%. This demonstrated 
the value of integrating physiological priors into data-driven learning. 

Optimizing the preprocessing pipeline to preserve high-frequency signals resulted in a 0.4 percentage point improvement 
in accuracy on the MIT-BIH dataset, while also providing a 1.2 percentage point increase in sensitivity for myocardial 
infarction detection. Spectral analysis confirmed retention of 92% of signal power between 50-150Hz compared to 67% 
in conventional preprocessing. The implementation of depthwise separable convolutions reduced the parameters from 
8.47M to 3.56M (58% reduction) while maintaining accuracy within 0.3 percentage points of the full network. This 
validated the feasibility of model compression without significant performance degradation. 

A loss function comparison evaluated cross-entropy, weighted cross-entropy, and focal loss on the imbalanced MIT-
BIH data. Focal loss achieved 98.7% accuracy with balanced per-class performance, outperforming cross-entropy 
(96.1%) and weighted cross-entropy (97.3%). The focal loss specifically improved fusion beat F1-score from 89.2% 
with cross-entropy to 94.1%, confirming its effectiveness for addressing class imbalance. Learning rate sensitivity 
analysis was conducted with values ranging from 0.0001 to 0.01, identifying 0.001 as the optimal value with 98.7% 
accuracy. Rates above 0.005 caused training instability, while rates below 0.0005 resulted in slower convergence without 
any improvement in accuracy. 

Table 2. Ablation Study Results on MIT-BIH Database 

Configuration Accuracy (%) Sensitivity (%) Specificity (%) 
Parameters 
(M) 

Inference 
Time (ms) 

Baseline CNN-
LSTM 

95.5 95.1 95.8 8.47 52 

+ Multi-Scale 
ResU 

96.8 96.4 97.1 9.23 61 

+ Attention 
(Channel) 

97.4 96.9 97.6 9.38 64 

+ Attention 
(Spatial) 

97.9 97.3 98.1 9.52 67 
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+ Guided 
Attention 

98.3 97.8 98.5 9.61 68 

+ HF 
Preservation 

98.7 98.2 98.9 9.61 68 

+ Depthwise 
Sep. Conv 

98.4 97.9 98.6 3.56 47 

3.3 Interpretability Analysis 

Gradient-weighted Class Activation Mapping visualization provided post-hoc explanations by highlighting 
electrocardiographic regions influencing classification decisions. For myocardial infarction detection, heatmaps 
demonstrated concentrated attention on ST-segments, with peak activation occurring 80-120ms after R-peaks, 
corresponding to the J-point and the early ST-segment, where ischemic changes typically manifest. High-frequency QRS 
components received secondary emphasis, particularly in leads V1-V3, where pathological Q-waves and fragmented 
QRS complexes indicate myocardial scarring. Quantitative analysis revealed a 73% overlap between high-attention 
regions and cardiologist-annotated diagnostic zones, validating the clinical relevance. 

Atrial fibrillation classification visualizations revealed attention distributed across P-wave regions (absent in atrial 
fibrillation) and the ST-T segment. The discovery of the importance of the ST-T segment aligns with recent clinical 
findings that identify nonspecific ST-T abnormalities as markers of atrial fibrillation risk. Activation maps showed a 
68% attention weight in the 100-300ms post-R-peak interval, compared to 31% for baseline methods lacking guided 
attention. This redistribution improved sensitivity for paroxysmal episodes with subtle P-wave changes. Lead-specific 
analysis revealed the highest attention on lead II (19%), aVF (16%), and V1 (14%), which aligns with clinical practice, 
as these leads optimally visualize atrial activity. 

SHAP value analysis quantified feature importance across the entire dataset. For the multi-class AAMI classification 
task, temporal features within the QRS complex (±50ms around R-peak) exhibited the highest SHAP values, contributing 
42% of total feature importance. ST-T segment features provided 28% importance, PR interval characteristics 
contributed 18%, and baseline segments accounted for 12%. Lead-specific SHAP analysis for 12-lead recordings 
revealed V4-V6 as most influential for myocardial infarction detection (combined 38% importance), reflecting their 
sensitivity to anterior and lateral wall abnormalities. Leads II, III, and aVF dominated for inferior infarction detection 
(combined 41% importance). 

Comparison with cardiologist decision patterns involved expert annotation of diagnostically critical electrocardiographic 
features on 500 randomly selected cases. The attention-based network showed 71% correspondence with expert-
identified regions for myocardial infarction and 68% for atrial fibrillation. Discrepancies primarily occurred in cases 
where subtle findings required integration of clinical context beyond electrocardiographic morphology, such as age, 
symptoms, and biomarker data. Interactive visualization tools enabled clinicians to query specific classifications, inspect 
attention heatmaps, and access case-based explanations, thereby facilitating the integration of clinical decision support 
workflows. 

Figure 1. Attention Visualization Heatmaps for Clinical Feature Validation 
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Figure 1 presents a multi-panel visualization demonstrating Grad-CAM attention distribution across representative 
electrocardiogram segments. The figure consists of three rows, corresponding to normal sinus rhythm, myocardial 
infarction, and atrial fibrillation cases. Each row displays the original electrocardiogram waveform in the top panel with 
12-lead arrangement (leads I, II, III, aVR, aVL, aVF, V1-V6) spanning 2.5 seconds. The middle panel overlays the Grad-
CAM heatmap using a color scale from blue (low attention, 0.0) to red (high attention, 1.0), with yellow indicating 
moderate attention (0.5). The bottom panel shows the quantitative attention weights as a line plot, with the x-axis 
representing time in milliseconds (0-2500ms) and the y-axis showing normalized attention intensity (0-1.0). 

For the myocardial infarction case, the heatmap demonstrates concentrated red-yellow coloration over the ST-segment 
region (80-120ms post-R-peak) in leads V2-V5, with peak attention values of 0.87 in lead V3. Secondary attention 
clusters appear at the QRS complex with intensities of 0.65, validating the preservation of high-frequency components. 
The normal rhythm case shows distributed attention across the entire cardiac cycle with maximum values of 0.42, lacking 
focal emphasis. The atrial fibrillation case exhibits attention peaks at irregular R-R intervals and diffuse ST-T segment 
activation (with an average intensity of 0.71), characterized by the absence of P-wave attention. Annotations mark key 
electrocardiographic features including P-waves, QRS complexes, and T-waves for reference. A separate subplot 
displays the receiver operating characteristic curves for attention-guided classification versus baseline methods, with 
area under curve values annotated. 

4. Discussion 

4.1 Analysis of Key Findings 

The experimental results demonstrate consistent performance improvements across diverse electrocardiographic 
databases and pathological conditions, validating the effectiveness of the proposed multi-scale feature extraction and 
attention mechanisms. The 3.2% accuracy improvement on the MIT-BIH Arrhythmia Database over baseline CNN-
LSTM architectures directly resulted from enhanced capture of both rapid morphological transitions and gradual 
temporal variations through parallel processing paths. The multi-scale architecture proved particularly beneficial for 
minority classes such as fusion beats, where detection sensitivity increased from 89.1% to 94.3%. This substantial gain 
addressed a critical limitation of single-scale approaches that optimized receptive field size for dominant classes at the 
expense of rare patterns. 

The 4.1% improvement in myocardial infarction detection sensitivity on the PTB-XL Database represented a clinically 
meaningful advancement, resulting in approximately 380 additional correctly identified cases among the 9,528 infarction 
samples. The sensitivity gain concentrated in subtle presentations with minimal ST-deviation, precisely the silent 
myocardial infarctions carrying the highest long-term mortality risk. Preservation of high-frequency signal components 
during preprocessing enabled detection of fragmented QRS complexes and notching patterns indicative of myocardial 
scarring. Spectral analysis confirmed the optimized pipeline retained 92% of power between 50-150Hz compared to 
67% with conventional filtering, directly explaining the sensitivity improvement. The maintained specificity of 95.8% 
ensured low false positive rates, avoiding unnecessary interventions and patient anxiety. 

Atrial fibrillation detection achieved 97.9% specificity through attention-guided feature weighting, emphasizing both P-
wave regions and ST-T segments. The discovery that ST-T segment abnormalities contribute to classification aligns with 
recent clinical observations identifying nonspecific ST-T changes as markers of atrial fibrillation risk. Guided spatial 
attention increased focus on the 100-300ms post-R-peak interval from 31% to 68%, enabling superior detection of 
paroxysmal episodes with preserved P-waves but abnormal repolarization. The algorithm's ability to detect brief atrial 
fibrillation episodes (≥30 seconds) addressed a critical gap in long-term monitoring applications where transient 
arrhythmias carry significant stroke risk despite low temporal burden. 

Computational efficiency gains proved equally important as accuracy improvements for the feasibility of clinical 
deployment. The 58% parameter reduction through depthwise separable convolutions decreased model size from 8.47M 
to 3.56M parameters while maintaining accuracy within 0.3 percentage points. This compression enabled deployment 
on mobile processors and wearable devices with limited memory and computational resources. Inference time reduction 
from 68ms to 47ms per 10-second segment supported real-time analysis in ambulatory monitoring scenarios. The 
memory footprint decreased from 32MB to 14MB for the full-precision model, with potential for further reduction to 
3.5MB through 8-bit quantization, resulting in minimal accuracy impact. 
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Table 3. Computational Efficiency Comparison 

Architecture 
Parameters 
(M) 

FLOPs (G) 
Inference 
Time (ms) 

Memory (MB) Accuracy (%) 

Standard CNN-
LSTM 

8.47 12.3 52 32 95.5 

ResNet-34 21.8 18.7 78 83 96.8 

CNN-
Transformer 

15.6 24.2 94 59 97.2 

Proposed (Full) 9.61 11.8 68 37 98.7 

Proposed 
(Compressed) 

3.56 6.2 47 14 98.4 

4.2 Clinical Implications and Real-World Applicability 

The clinical utility of automated electrocardiogram analysis extends beyond diagnostic accuracy to encompass workflow 
integration, interpretability, and practical deployment constraints. Silent myocardial infarction detection capabilities 
enable proactive screening in high-risk populations, including diabetic patients, elderly individuals, and those with 
multiple cardiovascular risk factors. The 96.4% sensitivity achieved on the PTB-XL Database approaches requirements 
for population-level screening, where high sensitivity minimizes false negatives while moderate specificity (95.8%) 
maintains acceptable positive predictive value in high-prevalence groups. Integration into annual physical examinations 
could identify previously unrecognized infarctions, triggering secondary prevention strategies including antiplatelet 
therapy, statins, and lifestyle modifications. 

Paroxysmal atrial fibrillation detection addresses the substantial burden of cryptogenic stroke, where 25-40% of cases 
have no identifiable etiology. Extended electrocardiographic monitoring following cryptogenic stroke or transient 
ischemic attack reveals atrial fibrillation in 16-30% of patients when surveillance extends beyond 30 days. The proposed 
algorithm's 97.9% specificity and 96.3% sensitivity position it for integration into patch monitors and smartwatch 
platforms capable of continuous single-lead recording. The 8.2-second median latency for detecting atrial fibrillation 
onset enables near-real-time notification, facilitating symptom-rhythm correlation and physician review of stored 
recordings. The system's robustness to noise (a 3.2% rejection rate compared to 6.3% for baseline methods) reduces data 
loss from motion artifacts and electrode displacement during daily activities. 

Interpretability features directly address the black-box criticism frequently leveled at deep learning medical applications. 
Grad-CAM visualization enables clinicians to verify that classifications derive from physiologically appropriate features 
rather than spurious correlations or dataset biases. The 73% overlap between network attention and expert-identified 
diagnostic regions for myocardial infarction and 68% for atrial fibrillation demonstrates clinically meaningful feature 
utilization. Interactive visualization tools that enable on-demand explanation generation to facilitate the building of trust 
among physicians and the regulatory approval process. The attention mechanisms also provide educational value by 
highlighting subtle findings that may escape manual inspection, serving as a teaching tool for cardiology trainees. 

Deployment considerations encompass hardware requirements, integration protocols, and maintenance demands. The 
compressed model's 14MB size and 47ms inference time enable implementation on mobile processors, including the 
Qualcomm Snapdragon 865 and Apple A13 Bionic chips, which are commonly found in smartphones and wearables. 
Battery consumption measurements indicate 2.3mAh per hour of continuous analysis on representative hardware, 
supporting multi-day monitoring from typical smartwatch batteries. Cloud-based deployment alternatives utilize server-
grade GPUs for the batch processing of transmitted recordings, enabling sub-second turnaround times for comprehensive 
reports. The network architecture enables incremental learning through periodic fine-tuning on institution-specific data, 
allowing it to adapt to local patient populations and record equipment characteristics without requiring complete 
retraining. Data security requirements are met through on-device inference, which eliminates the transmission of raw 
waveforms, with only classification results and confidence scores transmitted to health record systems. 
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Figure 2. Clinical Workflow Integration Diagram 

 

Figure 2 illustrates the complete clinical workflow for integrating the proposed algorithm into electrocardiogram analysis 
pipelines across three deployment scenarios: hospital-based 12-lead systems, ambulatory Holter monitors, and consumer 
wearable devices. The diagram employs a flowchart structure with distinct swim lanes for data acquisition, 
preprocessing, inference, interpretation, and clinical decision support. 

The left panel depicts the 12-lead hospital scenario beginning with standard electrode placement on the patient's torso 
(illustrated with an anatomical positioning diagram). Raw signals undergo digitization at a 500Hz sampling rate, 
followed by an optimized preprocessing pipeline that includes adaptive bandpass filtering (0.5-150Hz), modified Kalman 
baseline correction, and R-peak detection. The processed signals enter the multi-scale attention network, represented by 
a simplified architectural schematic that shows parallel ResU branches converging to LSTM layers. Output classification 
probabilities are displayed on a bar chart format, showing percentage confidence for each diagnostic category (normal, 
myocardial infarction, atrial fibrillation, other arrhythmias). Grad-CAM heatmaps overlay the 12-lead display, with 
attention intensity indicated by color gradients. A decision tree illustrates the routing of high-confidence results (greater 
than 95%) directly to the electronic health record, medium-confidence cases (85-95%) flagged for cardiologist review, 
and low-confidence classifications (<85%) triggering extended monitoring recommendations. 

The center panel illustrates an ambulatory Holter monitoring workflow spanning 24-48 hours. Continuous single-lead 
recording is fed into an edge processor that performs real-time beat detection and rhythm classification. A timeline 
visualization shows detected arrhythmia episodes marked with color-coded indicators: red for atrial fibrillation, orange 
for ventricular ectopy, and yellow for supraventricular tachycardia. Cumulative burden metrics display episode 
frequency, duration, and temporal distribution across circadian cycles. Attention to weight trends across the monitoring 
period reveals changes in feature importance patterns that may indicate an evolving pathology. 

The right panel demonstrates consumer wearable implementation using a smartwatch form factor. 
Photoplethysmography pulse detection triggers single-lead electrocardiogram acquisition during detected irregular 
rhythms. On-device inference enables binary atrial fibrillation classification within 30 seconds, with user notification 
provided through vibration and a visual alert. Secure cloud uploads occur for cardiologist review, with a store-and-
forward architecture ensuring data delivery despite intermittent connectivity. A decision support panel provides patient-
appropriate explanations of findings, recommendations for activity modification, and emergency contact protocols for 
concerning findings. 
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4.3 Limitations and Future Work 

Several limitations constrain the generalizability and clinical applicability of the current implementation. Dataset 
composition may not reflect the full spectrum of clinical presentations and patient demographics encountered in real-
world practice. The MIT-BIH Database recordings, dating from 1975 to 1979, predominantly involve Caucasian 
populations, which may limit their applicability to contemporary patients and diverse ethnic groups with different 
baseline electrocardiographic characteristics. The PTB-XL Database offers a broader geographic representation through 
a multi-center European collection; however, Asian, African, and Latin American populations remain underrepresented. 
Age distribution skews toward older adults (mean age 62 years in PTB-XL), raising questions about performance in 
younger patients with different physiological ECG patterns. 

Class imbalance persisted despite SMOTE-Tomek augmentation, particularly for rare arrhythmias and infarction 
subtypes. Fusion beats comprised only 0.8% of MIT-BIH samples even after augmentation, limiting the algorithm's 
exposure to diverse morphological variants. Posterior and right ventricular infarctions represented <5% of PTB-XL 
myocardial infarction cases, potentially under-training the network for these presentations. The class imbalance may 
inflate overall accuracy metrics while concealing weaknesses in detecting uncommon but clinically significant 
conditions. Validation on additional databases with higher minority class prevalence could reveal performance 
degradation not apparent in current experiments. 

Signal quality requirements remain incompletely characterized. The 3.2% rejection rate for excessively noisy recordings 
represents improvement over baseline methods but may prove insufficient for real-world wearable applications where 
electrode contact intermittency and motion artifacts substantially degrade signal quality. The algorithm's performance 
on electrocardiograms acquired with alternative electrode placements (e.g., smartwatch single-lead configurations, patch 
monitors with non-standard lead vectors) requires systematic evaluation. Robustness to common equipment variations, 
including sampling rate differences, analog filter characteristics, and baseline wander correction implementations, merits 
investigation. 

Interpretability remains post-hoc rather than inherently transparent. Grad-CAM visualizations provide valuable insights 
into network decision processes but require separate computational steps and may not capture all relevant features 
influencing classifications, particularly those distributed across multiple spatial and temporal scales. The attention 
mechanisms, while improving interpretability relative to standard CNNs, still operate as learned functions rather than 
deterministic rules that clinicians can verify against established diagnostic criteria. Development of inherently 
interpretable architectures that constrain learned representations to align with physiological principles represents an 
important future direction. 

Multi-modal integration offers substantial potential for improving diagnostic accuracy and clinical utility. 
Electrocardiogram analysis, combined with clinical risk factor assessment (including age, diabetes, hypertension, and 
smoking status), can refine probability estimates and personalize screening recommendations. Integration with 
biomarker data, including troponin levels and natriuretic peptides, would enable comprehensive cardiac risk 
stratification. Incorporation of echocardiographic findings could resolve ambiguous electrocardiographic presentations 
and identify structural substrates underlying electrical abnormalities. Federated learning frameworks can enable 
collaborative model improvement across institutions while preserving patient privacy, allowing for the leveraging of 
diverse datasets without centralizing sensitive health information. 

Prospective validation in real clinical environments represents the critical next step toward clinical adoption. 
Retrospective database analysis provides controlled evaluation but cannot capture the complexity of clinical decision-
making contexts where electrocardiogram interpretation informs diagnostic and therapeutic pathways. A prospective 
study enrolling patients presenting with chest pain or palpitations to emergency departments could assess the algorithm's 
impact on diagnostic efficiency, time to treatment, and clinical outcomes. A comparison of algorithm-assisted 
interpretation versus standard unassisted interpretation in a randomized design would quantify the clinical benefit while 
identifying failure modes that require algorithm refinement or physician override. 

Extension to additional cardiovascular conditions would broaden clinical utility. Long QT syndrome detection addresses 
sudden cardiac death risk in young patients, requiring precise QT interval measurement across varying heart rates. 
Bundle branch blocks classification aids in diagnosing conduction system disease and evaluating pacemaker indications. 
Electrolyte abnormalities, including hyperkalemia, produce characteristic electrocardiographic changes (peaked T-
waves and widened QRS complexes) that require urgent recognition and treatment. Pericarditis, pulmonary embolism, 
and structural heart diseases generate distinctive but subtle findings potentially amenable to automated detection. 
Development of comprehensive differential diagnosis support encompassing the full spectrum of electrocardiographic 
abnormalities remains a long-term goal. 
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Table 4. Performance Comparison with State-of-the-Art Methods 

Method Database Year 
Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Parameters 
(M) 

ResNet-50 MIT-BIH 2019 97.4 96.9 97.6 25.6 

CNN-LSTM 
Baseline 

MIT-BIH 2020 95.5 95.1 95.8 8.5 

Attention 
CNN 

MIT-BIH 2021 97.1 96.4 97.3 12.3 

Transformer MIT-BIH 2022 97.8 97.2 98.0 15.6 

Hybrid 
CNN-LSTM 

MIT-BIH 2023 98.1 97.6 98.3 9.8 

Proposed MIT-BIH 2024 98.7 97.8 98.5 3.6 

DenseNet PTB-XL 2020 91.2 90.8 91.6 7.0 

SE-ResNet PTB-XL 2021 93.7 93.2 94.1 28.1 

Multi-
branch CNN 

PTB-XL 2022 94.8 94.3 95.2 11.5 

Proposed PTB-XL 2024 96.1 96.4 95.8 3.6 

Figure 3. Multi-Scale Feature Extraction and Attention Mechanism Architecture 

 

Figure 3 provides a detailed architectural diagram of the proposed multi-scale feature extraction network with attention 
mechanisms, designed to illustrate the complete information flow from input electrocardiogram segments to final 
classification outputs. The visualization employs a left-to-right flowchart structure, with color-coded blocks representing 
different functional components and connecting arrows indicating data flow, accompanied by dimensionality 
annotations. 

The leftmost panel shows the input layer accepting 10-second electrocardiogram segments with dimensions (batch_size, 
channels, samples), where channels = 12 for full 12-lead recordings or channels = 1 for single-lead data, and samples = 
3600 at a sampling rate of 360Hz. A sample waveform displays typical PQRST morphology with labeled features. The 
initial convolutional layer appears as a blue rectangular block annotated with specifications: 64 filters, kernel size 7, 
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stride 1, padding 3, followed by batch normalization and ReLU activation. The output dimensionality (batch_size, 64, 
3600) is displayed below the block. 

The central section depicts the multi-scale feature extraction module comprising three parallel branches represented by 
vertically stacked blocks in green (Branch 1), yellow (Branch 2), and orange (Branch 3). Each branch contains a sequence 
of depthwise separable convolution layers with different receptive fields: Branch 1 uses a kernel size of 3 for rapid 
features, Branch 2 employs a kernel size of 7 for intermediate features, and Branch 3 utilizes a kernel size of 15 for 
gradual features. Detailed annotations illustrate the depthwise-pointwise factorization within each branch, where 
depthwise convolution (group = channels) is followed by a 1 × 1 pointwise convolution. Feature concatenation merges 
the three branches, producing combined representations with dimensionality (batch_size, 192, 3600). 

The attention mechanism section occupies the right-center region, divided into two parallel pathways shown in purple 
(channel attention) and pink (spatial attention). The channel attention pathway illustrates global average pooling, which 
reduces the spatial dimension to 1, followed by two fully connected layers with a reduction ratio of r = 16, producing 
channel attention weights with a dimension of (batch_size, 192, 1). The spatial attention pathway demonstrates a guided 
attention mechanism incorporating clinical domain knowledge masks, displayed as heatmap overlays on the 
electrocardiogram, which highlight ST-T segments for atrial fibrillation and QRS regions for myocardial infarction. 
Multi-head self-attention with four heads processes the spatially weighted features, utilizing Q, K, and V projections, 
and scaled dot-product attention is visualized through matrix multiplication diagrams. The output dimensions 
(batch_size, 192, 3600) maintain the temporal resolution. 

The temporal modeling stage is represented by stacked bidirectional LSTM layers, depicted in blue-gray blocks, which 
illustrate forward and backward hidden state propagation. The first LSTM layer outputs (batch_size, 128, 3600), while 
the second layer maintains identical dimensions. Temporal pooling aggregates the sequence through global average and 
max pooling operations shown as funnel shapes, producing fixed-length representations (batch_size, 128). The 
classification head comprises two fully connected layers (dense layers) with dropout regularization (p = 0.5) between 
layers, as illustrated by the gray rectangles. The final softmax activation produces class probability distributions 
(batch_size, num_classes) displayed as bar charts showing confidence scores for each diagnostic category. 

Performance comparison plots occupy the bottom panel, presenting training and validation accuracy curves across 100 
epochs for the full model and its ablated variants (baseline, +multi-scale, +attention, and +guided attention). The x-axis 
spans 0-100 epochs, and the y-axis shows accuracy from 90-100%, with different line styles distinguishing the 
configurations. The full model achieves 98.7% validation accuracy (solid red line with circular markers) compared to 
95.5% for the baseline (dashed blue line). A separate subplot displays computational efficiency metrics using grouped 
bar charts to compare parameters (millions), FLOPs (billions), and inference time (milliseconds) across different 
architectures, demonstrating the proposed method's superior accuracy-efficiency tradeoff. 

5. Conclusion 

This research presented a comprehensive approach to electrocardiogram abnormality detection through multi-scale 
feature extraction enhanced with attention mechanisms and optimized preprocessing. The methodology directly 
addressed critical limitations in existing cardiovascular diagnostic systems including inadequate capture of subtle 
morphological changes, loss of high-frequency prognostic signals, and insufficient clinical interpretability. The 
integration of residual U-blocks with depthwise separable convolutions enabled the simultaneous analysis of both rapid 
and gradual electrocardiographic phenomena, while reducing computational demands by 58%. This facilitated 
deployment on resource-constrained mobile and wearable platforms. Guided spatial attention incorporating clinical 
domain knowledge improved detection sensitivity for silent myocardial infarction and paroxysmal atrial fibrillation by 
directing network focus toward diagnostically relevant signal regions, including ST-T segments and high-frequency QRS 
components. 

A comprehensive evaluation across the MIT-BIH Arrhythmia Database, PTB-XL Database, and PhysioNet Challenge 
2017 demonstrated consistent performance improvements exceeding those of baseline CNN-LSTM architectures by 
3.2% for arrhythmia classification, 4.1% for myocardial infarction detection sensitivity, and 2.8% for atrial fibrillation 
specificity. Ablation studies quantified individual component contributions, validating that each optimization strategy 
provided measurable performance gains. Multi-scale extraction contributed 1.3 percentage points, attention mechanisms 
added 1.1 percentage points, and high-frequency signal preservation improved sensitivity by 1.2 percentage points for 
subtle infarctions. Grad-CAM visualization confirmed clinical relevance through 73% overlap between network 
attention regions and cardiologist-identified diagnostic features for myocardial infarction cases and 68% concordance 
for atrial fibrillation episodes. 
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