Artificial Intelligence and Machine Learning Review :C}
Scipublication v
DOL: 10.69987/AIMLR 2024.50207

L1 - SCIPUBLICATION

Performance Evaluation and Comparison of Machine Learning Algorithms for
Anomalous Login Behavior Detection in Enterprise Networks

Jin Zhang'

! Computer Science, lllinois Institute of Technology, IL, USA
Corresponding author E-mail:kgnnnivu@gmail.com

Keywords Abstract

anomaly detection, Authentication systems in enterprise networks form security boundaries where
enterprise security, credential-based access mechanisms intersect with adversarial intrusion
machine learning, login vectors. This investigation characterizes machine learning architectures for
behavior, performance detecting authentication anomalies through systematic empirical analysis of
evaluation Support Vector Machines, Random Forest classifiers, and Neural Network

architectures. We process 2,347,000 (=2.35M) authentication events from
operational enterprise deployments, capturing natural distributions of benign
activities (78.7%) alongside brute force attempts (12.2%), credential stuffing
(6.7%), and compromised account behaviors (2.4%). Random Forest
classifiers achieve 94.7% detection accuracy with 3.2 millisecond inference
latency, establishing Pareto-optimal performance for medium-scale
deployments. Support Vector Machines minimize false positive rates to 2.1%
through margin maximization in RBF kernel spaces, trading 6% detection
coverage for precision. Neural Networks capture non-linear behavioral
signatures in compromised account detection (93.7% accuracy) despite
requiring 1156 seconds for model convergence. Temporal analysis reveals 23%
false positive elevation during Monday mornings and 31% increase during
holiday periods, informing adaptive threshold strategies. The empirical
characterization provides quantitative bounds on the accuracy-latency-
precision trade-off space, enabling algorithm selection aligned with specific
operational constraints and risk tolerances.

1. Introduction

1.1 Authentication Systems as Attack Surfaces

Enterprise authentication infrastructures concentrate adversarial activities at access control boundaries. Zero-trust
architectural transitions amplify authentication monitorin% criticality—each login event potentially masks credential
compromise, insider threats, or lateral movement patterns . Contemporary attack methodologies transcend signature-
based detection through credential stuffing sequences, password spraying campaigns, and authentication mechanism
manipulation that mimics legitimate access patterns.

Authentication event spaces encompass temporal sequences, geographic distributions, device fingerprints, and
behavioral trajectories that resist rule-based characterization !, User population heterogeneity compounds baseline
establishment challenges: administrative accounts exhibit sporadic high-privilege access patterns, service accounts
maintain predictable automation signatures, while standard users demonstrate variable behaviors influenced by
organizational rhythms. Statistical characterization reveals power-law distributions in inter-arrival times, heavy-tailed
session durations, and non-stationary patterns aligned with business cycles.

Enterprise networks process authentication volumes exceeding thousands of events per second, imposing sub-100
millisecond latency constraints for maintaining user experience Bl False positive costs manifest as user friction and
support overhead, while false negatives enable security breaches with asymmetric financial and reputational damage.
These operational realities constrain algorithm selection beyond pure accuracy optimization, necessitating multi-
objective optimization across detection fidelity, computational efficiency, and deployment feasibility dimensions.

The Artificial Intelligence and Machine Learning Review
[77]


http://www.scipublication.com/
https://doi.org/10.69987/JACS.2024.40701
https://scipublication.com

1.2 Research Objectives and Technical Contributions

This investigation establishes empirical performance boundaries for machine learning architectures under enterprise
authentication constraints. We develop a standardized evaluation protocol enabling reproducible algorithmic
comparison, addressing methodological inconsistencies prevalent in security research. The experimental framework
quantifies relationships between model capacity, detection performance, and computational overhead through controlled
scaling experiments.

Our technical contributions span three dimensions. First, we characterize algorithm-specific performance across distinct
attack categories, revealing that Random Forest excels at credential stuffing detection (96.2%) while Support Vector
Machines optimize brute force identification (94.1%). Second, we quantify computational trade-offs through systematic
profiling: Random Forest inference requires 3.2 milliseconds per authentication event, Support Vector Machines achieve
1.8 millisecond latency through kernel caching, while Neural Networks exhibit 5.7 millisecond single-instance latency
reducible to 2.4 milliseconds through batching. Third, we identify temporal false positive patterns—23% elevation
during Monday mornings, 31% increase during holidays—that inform dynamic threshold calibration strategies.

The empirical analysis demonstrates that Random Forest classifiers achieve Pareto-optimal performance for
organizations processing 10,000-100,000 daily authentication events. Support Vector Machines excel in precision-
critical deployments where false positive minimization supersedes detection coverage, achieving 2.1% false positive
rates through conservative margin construction. Neural Networks capture sophisticated behavioral deviations
undetectable by shallow methods, particularly in compromised account scenarios where attackers employ credential
knowledge to evade detection.

1.3 Scope and Experimental Boundaries

The investigation encompasses three algorithmic families selected for complementary computational properties and
theoretical foundations. Support Vector Machines exemplify kernel-based methods with generalization guarantees,
Random Forests represent ensemble techniques balancing interpretability with accuracy, while Neural Networks
demonstrate capacity for learning hierarchical feature representations.

Our experimental corpus comprises 2,347,000 (=2.35M) authentication events from financial services, healthcare, and
technology sectors collected over 180 days. Attack distributions reflect operational reality: brute force attempts cluster
temporally following publicized vulnerabilities, credential stuffing exhibits automation signatures with regular inter-
arrival times, while compromised accounts demonstrate subtle behavioral shifts detectable only through longitudinal
analysis. We explicitly scope analysis to supervised learning paradigms, acknowledging that semi-supervised and
unsupervised approaches address different operational scenarios with distinct data availability assumptions.

Computational experiments execute on standardized configurations (NVIDIA A100 GPUs, 80GB memory) ensuring
reproducible measurements. Algorithm implementations employ scikit-learn 1.3.0 and TensorFlow 2.13.0 with
consistent preprocessing pipelines. The evaluation protocol incorporates offline metrics (accuracy, precision, recall, F1-
score) alongside online metrics (latency, throughput, memory consumption) critical for production viability assessment.

2. Related Work and Literature Review

2.1 Machine Learning Architectures for Network Anomaly Detection

Bayesian inference frameworks demonstrate robust anomaly detection under uncertainty when prior distributions
accurately model threat landscapes . Ige and Kiekintveld establish that hyperparameter optimization influences
detection performance more significantly than architectural choices, with grid search yielding 8.3% improvement over
default configurations. Their ablation studies reveal that temporal feature engineering contributes 42% of total
performance gains, while categorical embeddings account for 31% improvement over one-hot encoding.

Computational constraints in edge deployments necessitate efficiency-accuracy trade-offs quantified by Tripathy et al.
[, Ensemble methods achieve 87% of deep learning accuracy while consuming 23% of computational resources,
challenging assumptions about architectural complexity requirements. Power consumption measurements—critical for
distributed deployments—show Random Forests operating at 3.2 watts versus 28.7 watts for Neural Networks on
embedded hardware, establishing energy efficiency as a primary deployment consideration.

Feature representation strategies determine detection boundaries as demonstrated through systematic ablation by Azizan
et al. [, Temporal feature extraction through sliding windows with exponential decay weighting captures behavioral
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evolution while bounding memory consumption. Their t-SNE visualizations reveal that learned representations
progressively separate attack clusters through training iterations, with final embeddings achieving 0.89 silhouette
coefficient indicating strong cluster cohesion.

Class imbalance mitigation through synthetic minority oversampling (SMOTE) improves minority class recall by 15%
as quantified by Satriawan et al. ["l. Synthetic sample generation preserves local manifold geometry while expanding
decision boundary coverage for underrepresented attacks. However, SMOTE-generated samples lack adversarial
robustness—gradient-based perturbations achieve 76% evasion rate against models trained with synthetic augmentation
versus 42% against naturally balanced datasets.

2.2 Enterprise Authentication Threat Landscapes

The CICIDS2017 dataset analysis by Rosay et al. ¥l reveals that 73% of successful intrusions exploit legitimate
credentials rather than technical vulnerabilities. Credential-based attacks exhibit distinct temporal signatures: brute force
attempts cluster within 2-hour windows following password policy changes, credential stuffing distributes uniformly
across 24-hour periods to evade rate limiting, while insider threats concentrate during off-hours when monitoring
reduces.

Temporal authentication dynamics exhibit complex periodicities captured through spectral analysis. Elghalhoud et al. !
demonstrate that Fourier basis decomposition with 24-hour, 7-day, and 30-day components captures 81% of variance in
legitimate access patterns. Convolutional architectures operating on these spectral representations achieve 8.3%
improvement over recurrent networks for time-series anomaly detection, attributed to parallelizable computation and
explicit periodicity modeling.

Production deployment realities diverge from laboratory performance as quantified by Gnanasivam et al. [!. Real-world
accuracy degrades 15-20% due to concept drift—user behaviors evolve, new applications introduce authentication
patterns, and organizational changes alter access distributions. Models require retraining every 60-90 days to maintain
performance thresholds, with incremental learning approaches reducing retraining overhead by 67% through selective
parameter updates.

2.3 Performance Evaluation Frameworks

Multi-criteria evaluation frameworks balance competing objectives through Pareto frontier analysis ['!l. Zeng and Wu
demonstrate that single-metric optimization yields suboptimal operational performance: accuracy-optimized models
generate excessive false positives, while precision-optimized approaches miss critical attacks. Their weighted objective
functions enable stakeholder-specific optimization, with financial institutions prioritizing precision (weight=0.7) while
government agencies emphasize recall (weight=0.6).

Cross-domain transferability remains problematic as established by Siddharth et al. '?). Models trained on enterprise
datasets exhibit 34% performance degradation when deployed in academic networks, attributed to fundamental
behavioral differences: enterprise users follow regular schedules while academic patterns vary by semester, research
deadlines create unusual access spikes absent in corporate environments, and collaborative cultures generate credential
sharing unobservable in regulated industries.

Comprehensive benchmarking requires adversarial evaluation beyond benign metrics ['*!. Ibrahim et al. incorporate

gradient-based attacks, concept drift simulation through temporal holdout, and scalability testing across order-of-
magnitude data variations. Their framework reveals that published accuracies overlook operational factors: alert fatigue
reduces analyst efficiency by 3.7% per false positive percentage point, investigation overhead scales super-linearly with
alert volume, and integration complexity with security information and event management (SIEM) systems constrains
deployment options.

3. Methodology and Experimental Design

3.1 Dataset Architecture and Preprocessing Pipeline

Authentication logs from three enterprise sectors yield 2,347,000 (=2.35M) events with natural attack distributions
reflecting operational security landscapes[14]. The corpus exhibits 78.7% legitimate logins characterized by business-
hour concentration and predictable geographic origins, 12.2% brute force attempts with exponentially distributed inter-
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arrival times, 6.7% credential stuffing displaying automation signatures through uniform timing patterns, and 2.4%
compromised account activities manifesting as subtle behavioral deviations from established baselines.

The preprocessing pipeline transforms heterogeneous log formats through a multi-stage architecture optimized for
behavioral signal preservation[15]. Data cleansing eliminates 86,739 records (3.7%) containing null authentication
fields, unparseable timestamps, or protocol inconsistencies that compromise training stability. Temporal segmentation
employs 60-minute sliding windows with 45-minute overlap, capturing session-level behaviors while maintaining 4x
data augmentation through overlapping observations. Each window generates 147-dimensional feature vectors through
domain-informed extraction:

Temporal features capture authentication rhythms through 23 dimensions. Login frequencies undergo Fourier
transformation with basis functions at 24-hour, 168-hour (weekly), and 720-hour (monthly) periods, preserving
periodicities while compressing representation. Inter-arrival times between consecutive logins follow log-normal
distributions characterized by maximum likelihood parameters (1, o). Session durations exhibit heavy-tailed
distributions modeled through three-parameter Weibull functions with shape parameter k = 0.73 indicating sub-
exponential decay.

Spatial features encode geographic and network properties across 31 dimensions. GPS coordinates transform through
learned embeddings that preserve haversine distances while accounting for organizational site clustering—corporate
offices form dense regions while remote workers distribute sparsely. IP addresses undergo hierarchical encoding: /8
subnet captures geographic region, /16 identifies organizational boundaries, /24 distinguishes departments, and full /32
provides device-level granularity. Autonomous system numbers map to categorical embeddings learned jointly with
authentication patterns[16].

Device fingerprints generate 42-dimensional representations capturing platform characteristics. Operating system
versions encode through ordinal mappings reflecting security posture—newer versions receive higher values indicating
improved protection[17]. Browser user-agents decompose into vendor, version, and rendering engine components with
interaction terms capturing compatibility vulnerabilitiecsError! Reference source not found.. Hardware identifiers
including MAC addresses undergo locality-sensitive hashing, preserving similarity while preventing direct device
tracking[ 18].

Behavioral features model authentication dynamics through 51 dimensions. Failed login sequences form Markov chains
with transition matrices capturing retry patterns—Ilegitimate users exhibit declining retry probability while automated
attacks maintain constant rates[19]. Password complexity indicators derive from entropy estimation without storing
credentials, using character class diversity and length as proxies. Keystroke dynamics when available provide biometric
signals through dwell time and flight time distributions fitted to gamma functions[20].

Feature standardization employs robust scaling: z = (x - median(x)) / IQR(x), where interquartile range provides outlier
resistance compared to standard deviation. Categorical variables undergo target encoding with Bayesian smoothing
parameter o = 10 preventing overfitting on rare categories. The complete pipeline processes 2,347,000 (=2.35M) events
in 847 seconds achieving 89% CPU utilization through joblib parallelization across 32 cores.

Table 1: Dataset Characteristics and Distribution Summary

. Normal Credential Compromised
Metric Logins Brute Force Stuffing Account Total
Count 1,847,235 287,445 156,782 55,538 2,347,000
Percentage 78.7% 12.2% 6.7% 2.4% 100%
Unique Users 8,947 2,334 1,156 287 9,234
Time Span 180 180 180 180 180
(Days)
Peak Activity 9 - 11 am, 1 - 3 Random Random Business Hours Mixed

Hours pm
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Geographic

. 47 156 234 23 234
Locations

Temporal data splitting prevents information leakage inherent in random partitioning. Training comprises events from
days 1-126 (70%), validation uses days 127-153 (15%), and testing employs days 154-180 (15%)[21]. This chronological
segmentation ensures models cannot exploit future patterns, simulating real-world deployment where predictions operate
on temporally novel events. The split maintains attack proportion consistency: each partition contains 78-79% legitimate
traffic with proportional attack representation.

3.2 Algorithm Configuration and Hyperparameter Optimization

Support Vector Machine configuration exploits the kernel trick for non-linear boundary construction in infinite-
dimensional spaces[22]. The radial basis function K(x i, x j) = exp(-y|x 1 - X j|[*) with bandwidth y = 0.001 balances
locality and smoothness, selected through logarithmic grld search over [10"-5, 10"-1]. Regularization parameter C =
10.0 controls the trade-off between margin maximization and training error rnlnlrnlzatlon with higher values permitting
more support vectors but risking overfitting[23]. Class weight adjustment w i=n_samples / (n_classes x n_samples i)
compensates for imbalanced distributions, ensuring minority attack classes receive proportional influence during
optimization.

Random Forest architecture aggregates 200 decision trees trained on bootstrap samples with replacement. Tree depth
limitation at 15 levels prevents overfitting while maintaining sufficient expressivity for capturing attack patterns—deeper
trees achieve marginally improved training accuracy but degrade validation performance. Splitting criteria require
minimum 5 samples, preventing partitions on individual instances that memorize rather than generalize. Leaf nodes
demand 2 samples minimum, enabling fine-grained decisions while avoiding single-instance leaves. Feature sampling
at each split uses sqrt(147) = 12 features, introducing randomness that decorrelates trees while maintaining sufficient
information for accurate splitting. Gini impurity serves as the splitting criterion: G = 1 - X(p i2), measuring class
distribution homogeneity.

Neural Network topology implements a funnel architecture with hidden layers containing 128, 64, and 32 neurons
respectively. The geometric decay pattern (reduction factor 0.5) progressively compresses representations, forcing
abstraction while preventing information bottlenecks. Rectified linear activation f(x) = max(0, x) provides non-linearity
while maintaining gradient flow through positive regions. Dropout regularization randomly zeros 30% of activations
during training, creating an implicit ensemble that improves generalization. He initialization scales weights by
sqrt(2/n_in), accounting for ReLU's zeroing of negative inputs which effectively halves variance.

Optimization employs adaptive moment estimation (Adam) with f 1=0.9 controlling exponential decay of first moment
estimates and B 2 = 0.999 for second moments. Initial learning rate a = 0.001 undergoes exponential decay: o. t=0 0
x 0.95%(t/epoch), reducing step size as optimization approaches minimaError! Reference source not found.. Batch size
B = 256 balances gradient noise—smaller batches increase stochasticity aiding escape from local minima while larger
batches provide stable convergence. Early stopping monitors validation loss with patience p = 10 epochs, terminating
training when validation performance plateaus to prevent overfitting[24]. Loss function employs weighted binary cross-
entropy: L =-Zw _i[y ilog(y i)+ (1-y_i)log(1-y i)] where weights inversely proportion to class frequency.

Table 2: Algorithm Configuration and Hyperparameter Settings

Algorithm Key Parameters Values &%ii}i?)gation ngfgs&n

SVM Kernel RBF Grid Search 5 -Fold CV
SVM C (Regularization) 10.0 Grid Search 5 -Fold CV
SVM Gamma 0.001 Grid Search 5 -Fold CV
SVM Class Weight Balanced Grid Search 5-Fold CV
Random Forest n_estimators 200 Random Search 5-Fold CV
Random Forest max_depth 15 Random Search 5-Fold CV
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Random Forest min_samples_split 5 Random Search 5-Fold CV

Random Forest min_samples leaf 2 Random Search 5-Fold CV
Neural Network Hidden Layers [128, 64, 32] Adam Optimizer Hold - out
Neural Network Learning Rate 0.001 Adam Optimizer Hold - out
Neural Network Batch Size 256 Adam Optimizer Hold - out
Neural Network Dropout Rate 0.3 Adam Optimizer Hold - out

Bayesian optimization with Gaussian process surrogates efficiently explores hyperparameter spaces. The acquisition
function balances exploration and exploitation: a(x) = u(x) + ko(x) where posterior mean | encourages exploitation
while variance ¢ weighted by k = 2.576 promotes exploration. Optimization iterates 100 times, evaluating 2% of
configuration space while achieving 95% of exhaustive search performance. Gaussian process kernels employ Matérn-
5/2 functions providing twice-differentiable sample paths suitable for gradient-based optimization of acquisition
functions.

3.3 Evaluation Metrics and Statistical Analysis

Performance quantification employs complementary metrics capturing distinct operational aspects. Accuracy = (TP +
TN) / (TP + TN + FP + FN) measures overall correctness but obscures class-specific performance given 78.7% baseline
accuracy achievable by predicting all samples as legitimate. Precision = TP / (TP + FP) quantifies alert reliability, directly
impacting analyst workload—Ilow precision generates investigation overhead and alert fatigue. Recall = TP / (TP + FN)
measures attack coverage with security implications—missed attacks enable breaches with cascading damage.

The F [ score generalizes F1 through differential weighting: F = (1 + ?) x (Precision x Recall) / (f? x Precision +
Recall). Setting B = 2 emphasizes recall, reflecting organizational priorities where missed attacks carry higher costs than
false alarms. This asymmetric weighting aligns with security economics: breach costs average $4.35 million while false
positive investigation costs $127 per incident[25].

Receiver Operating Characteristic analysis examines threshold-independent performance through true positive rate
versus false positive rate trade-offs. Area Under Curve integration provides single-value comparison, though ROC
optimism under class imbalance necessitates complementary Precision-Recall curves. DeLong's method tests AUC
difference significance: z = (AUC 1 - AUC 2) / sqrt(SE 12 + SE 22 - 2rxSE 1xSE 2) where standard errors derive
from Mann-Whitney statistics. Bonferroni correction adjusts significance thresholds for m = 3 pairwise comparisons:
o,_adjusted =0.05/3 =0.017[26].

Computational profiling captures deployment-critical characteristics. Training time excludes data loading but includes
all optimization iterations, measured through monotonic clocks immune to system time adjustments. Inference latency
reports 95th percentile across 10,000 samples, providing robust estimates—mean latencies suffer from long-tail
distributions where occasional cache misses or garbage collection inflate averages. Memory consumption tracks resident
set size for training peaks and steady-state inference requirements. Throughput measures sustained request rates under
continuous load, identifying saturation points where queuing delays emerge.

Table 3: Performance Evaluation Metrics and Definitions

. . . Mathematical Operational
Metric Category Specific Metric Definition Significance
Classification Accurac (TP +TN) /(TP + TN + Overall Detection
Performance y FP + FN) Effectiveness
gé??g;ggglc%n Precision TP/ (TP + FP) False Alarm Reduction
Classificati
Pe?}?g;;f; lc‘én Recall TP / (TP + FN) Threat Coverage
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Classification 2 x (Precision x Recall) /

Performance FI - Score (Precision + Recall) Balanced Performance
Operational Impact False Positive Rate FP/(FP +TN) User Experience Impact
Operational Impact False Negative Rate FN/(FN + TP) Security Risk Level
ggfﬁ?gﬁ;onal Training Time Seconds Deployment Feasibility
g?fﬁ?gﬁigonal Inference Latency Milliseconds Real - time Capability

Within the training split, stratified k-fold validation maintains class proportions across folds; validation and test remain
strictly chronological to prevent leakage folds, preventing optimistic bias from folds lacking rare attacks. Each fold
contains approximately 469,400 samples with proportional attack representation. The stratification algorithm iteratively
assigns samples to folds maintaining class balance within 0.1% tolerance. Cross-validation provides mean performance
with confidence intervals: CI =X +t_(0/2,k-1) x s / sqrt(k) where t-statistics account for small sample size k = 5.

4. Experimental Results and Performance Analysis

4.1 Detection Accuracy and Attack-Specific Performance

Random Forest classifiers demonstrate superior aggregate performance achieving 94.7% accuracy through ensemble
diversity—Dbootstrap sampling creates 200 unique training sets while random feature selection decorrelates individual
trees. The ensemble's 147,000 total tree nodes distributed across attack boundaries provide comprehensive coverage
exceeding single classifier capacity. Attack-specific analysis reveals nuanced performance characteristics: credential
stuffing detection reaches 96.2% accuracy as automated tools generate distinctive timing signatures—inter-arrival
variance drops 73% compared to human-generated traffic while geographic dispersion increases 4.2x from distributed
botnets.

Support Vector Machines excel at brute force detection (94.1% accuracy) by exploiting geometric properties in
transformed feature spaces. The RBF kernel maps authentication patterns to infinite dimensions where linear separation
becomes feasible: @(x) - ¢(y) = exp(-y|x - y|[*). Support vectors concentrate at decision boundaries with 73% representing
transition regions between legitimate errors and systematic attacks. Margin analysis reveals 2.3 units average separatlon
in kernel space, providing robustness against perturbations—adversarial inputs require displacement exceeding margin
width for successful evasion[27].

Neural Networks achieve highest compromised account detection accuracy (93.7%) through hierarchical feature
learning. First layer neurons activate on primitive patterns: neuron 37 responds to afternoon logins from unusual
locations, neuron 82 detects rapid geographic transitions impossible through physical travel[28]. Second layer combines
primitives into behavioral concepts: neuron 15 identifies credential sharing patterns, neuron 29 recognizes automated
access from compromised accounts. Final layer neurons correspond to attack categories with neuron 7 achieving 0.91
correlation with compromised account labels. Gradient-weighted class activation mapping reveals attention focus on
temporal inconsistencies and device anomalies during compromised account classification.

Figure 1: Algorithm Performance Comparison Across Attack Categories

Attack Categories

Credential Compromised
Normal Brute Force “oCEM] o

Overall Accuracy

» Random Forest 1% 93.8% 96.2% 92.4% I o477
£
=
£ ,
5 SVM 7% 941% 89.6% 88.9% [ o1.3%
k=4
<

Neural Network 4% 91.2% 931% 93.7% N o257

Detection Difficulty by Attack Type 8s 90 95100

Accuracy (%)
I 85-90
I 90-93
I 93-95
I o5-97

93.7% 93.0% 93.0% 91.7%
Normal Brute Credential ~ Compromised
Force Stuffing Account
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Statistical validation confirms performance differences exceed random variation. Bootstrap resampling (B = 1,000)
establishes confidence intervals: Random Forest [94.3%, 95.1%], SVM [90.9%, 91.7%], Neural Network [92.4%,
93.2%]. Non-overlapping intervals indicate significant differences at o = 0.05. McNemar's test on paired predictions
confirms disagreement patterns are non-random (¥ = 187.3, p < 0.001), indicating algorithms capture complementary
signals potentially combinable through ensemble methods.

Table 4: Detailed Detection Performance Analysis by Attack Type

. Normal Credential Compromised Overall
Algorithm Behavior Brute Force Stuffing Account Accuracy
Random Forest 95.1%+0.3%  93.8%+0.4% 962%+02% 924%+05% 94.7%+ 0.2%
SVM 92.7%+0.4% 94.1%+03%  89.6%+0.6% 88.9%=+0.7% 91.3%+0.3%

Neural 93.4%£0.5% 91.2%%0.6% 93.1%+04% 93.7%=04%  92.8%+03%
Statistical <0.001 <0.001 <0.001 <0.01 <0.001
Significance p=9. p=7 p== p=" Pen

Error analysis through confusion matrices reveals systematic misclassification patterns. Random Forest conflates
credential stuffing with compromised accounts in 3.8% of cases where attackers employ stolen credentials through
automated tools, creating behavioral overlap. Support Vector Machines struggle with attack variants absent from training
data—novel brute force tools using non-standard patterns achieve 31% evasion rate. Neural Networks exhibit false
positives on legitimate users with irregular schedules (night shift workers, international travelers) whose behaviors
deviate from population norms[29].

4.2 Computational Performance and Scalability Analysis

Training computational requirements exhibit distinct scaling behaviors across algorithms. Support Vector Machines
require 847 seconds for complete dataset training with O(n2d) complexity where n represents samples and d dimensions.
Kernel matrix computation dominates runtime—storing 2.3M x 2.3M matrix exceeds memory, necessitating chunking
strategies that introduce 1.7x overhead. Sequential minimal optimization decomposes the quadratic programming
problem into two-variable sub-problems, achieving convergence in 3,847 iterations.

Random Forest training completes in 423 seconds through embarrassingly parallel tree construction. Individual trees
train in 2.1 seconds average with variance 0.3 seconds depending on bootstrap sample composition. Parallel efficiency
reaches 0.89 on 32 cores before Amdahl's law limits further speedup—serial components including bootstrap sampling
and final aggregation consume 11% of runtime. Memory consumption peaks at 2.3GB during training as each tree
maintains complete bootstrap samples, though post-training pruning reduces model size to 150MB by eliminating
redundant nodes.

Neural Networks require 1,156 seconds across 127 epochs before early stopping triggers. GPU acceleration provides
8.7x speedup versus CPU through parallelized matrix operations—batch gradient computation achieves 2.3 TFLOPS
(71% of theoretical peak) on A100 hardware[30]. Training loss exhibits exponential decay: L(t) = 0.47 x exp(-0.031t) +
0.12, with asymptotic loss indicating 12% irreducible error from class overlap. Gradient norm evolution reveals three
training phases: rapid descent (epochs 1-20), oscillatory refinement (epochs 21-85), and convergence plateau (epochs
86-127).

Memory footprint analysis informs deployment feasibility across infrastructure tiers. Random Forest inference requires
150MB model storage plus 8MB working memory for tree traversal, fitting within edge device constraints. Support
Vector Machines compress to 87MB by retaining only 3,472 support vectors (0.15% of training data) with 4MB
inference overhead for kernel computations. Neural Networks occupy 203MB through weight matrices with 16MB
activation storage for batch processing, necessitating dedicated hardware in resource-constrained environments.

The Artificial Intelligence and Machine Learning Review
[84]



Figure 2: Computational Performance and Resource Utilization Analysis

0 Memory Peak (GB)

Algorithms

| @ Random Forest
81 ° @ swm

41 @ Neural Network
Bubble Size:

6
‘ Memory Usage
34

41 5 N 2.3
| @

Inference Latency (ms)

04
400 . 800 120 1600 RF SVM NN
Training Time (seconds)

Throughput Performance (req/s) Scalability Index

85%
600
.\.\‘\. =
200 1 .\.\0\.

Low Medium High Peak
Load Conditions

65%

Requests/sec
]
o

Production latency measurements under sustained load reveal performance boundaries. Random Forest maintains 3.2ms
median latency with 4.7ms 99th percentile, exhibiting predictable performance suitable for synchronous authentication
paths. Support Vector Machines achieve 1.8ms median latency through kernel result caching—cache hit rate of 67%
reflects authentication pattern repetition. Cache misses incur 5.2ms latency for full kernel evaluation. Neural Networks
demonstrate bimodal latency distributions: single-sample inference requires 5.7ms while 64-sample batches amortize to
2.4ms per sample through matrix operation efficiency.

Throughput capacity under concurrent load identifies scalability limits. Random Forest sustains 312 requests/second
before CPU saturation at 85% utilization causes queuing delays. Support Vector Machines handle 556 requests/second
with performance degradation beyond 420 requests/second as cache thrashing emerges. Neural Networks process 175
requests/second individually but achieve 417 requests/second with dynamic batching, though latency variance increases
from 0.8ms to 2.1ms standard deviation.

Table 5: Computational Performance and Scalability Analysis

. . . Memory
. Training Time Inference Memory Peak Throughput

Algorithm () Latency (ms)  (GB) g‘}%r)e“ce (req/s)
Random Forest 423 +23 32+04 2.3 150 312

SVM 847 + 45 1.8+0.2 4.1 87 556

Neural 1,156+ 67 57408 3.7 203 175

etwork

Neural

Network 1,156 £ 67 24+03 3.7 203 417

(Batch)

Scalability experiments varying dataset size from 10”4 to 1076 samples reveal asymptotic complexity. Random Forest
exhibits O(n log n) empirical scaling with exponent 1.08 from least squares fitting. Support Vector Machines demonstrate
O(n”1.8) growth, with exponent increasing to 2.1 for high-dimensional datasets where kernel evaluations dominate.
Neural Networks maintain linear O(n) scaling through mini-batch processing, with gradient computation time
independent of dataset size beyond batch dimensions.
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4.3 False Positive Analysis and Operational Impact Assessment

False positive distributions exhibit temporal and demographic patterns influencing operational burden. Support Vector
Machines achieve 2.1% false positive rate through conservative margin construction—decision boundaries maintain 2.3-
unit average separation from training samples in kernel space. The conservatism manifests as 6% reduction in attack
detection, representing explicit precision-recall trade-off favoring user experience over comprehensive coverage.

Random Forest false positives (3.8%) distribute uniformly across user populations with Gini coefficient 0.12 indicating
equitable impact. Uniform distribution prevents individual users from experiencing repeated friction—maximum per-
user false positive rate reaches 4.2% compared to 11.3% for concentrated distributions. Investigation reveals 67% of
false positives stem from legitimate behavioral anomalies: international conference attendance (31%), project deadlines
requiring unusual hours (24%), and new device adoption (12%).

Neural Network false positives (4.2%) concentrate on users with complex access patterns—multivariate analysis
identifies three risk factors: role diversity (2.1% increase per additional role), schedule irregularity (1.8x for shift
workers), and travel frequency (1.4x per monthly trip). The concentration creates user frustration with 17% of affected
users reporting consideration of workarounds that compromise security.

Temporal false positive dynamics align with organizational rhythms. Monday morning rates increase 23% as users
reconnect after weekends from accumulated devices and locations. Friday afternoons exhibit 18% elevation from early
departures and remote access preparation. Holiday periods show 31% increase from skeleton staffing where individual
users cover multiple roles with associated authentication pattern changes. These patterns suggest adaptive thresholding:
T(t) =T base x (1 + a x seasonal_factor(t)) where seasonal factors derive from historical false positive rates.

Figure 3: False Positive Analysis and Operational Impact Assessment
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Operational cost modeling quantifies false positive impact. Each percentage point of false positive rate generates 487
annual help desk tickets per 10,000 users at $47 per ticket average resolution cost. Security operations centers require
0.31 analyst hours per 100 false positives for investigation, translating to 1.3 full-time equivalents per percentage point
at organizational scale. Random Forest's 3.8% rate demands 4.9 analysts ($490,000 annual cost) while SVM's 2.1%
requires 2.7 analysts ($270,000), though Random Forest prevents estimated $470,000 in breach costs through superior
attack detection, yielding positive return on investment.

User satisfaction surveys (n = 1,247) correlate with false positive exposure following exponential decay: S =92 x exp(-
0.21 x FP_count) where S represents satisfaction percentage and FP_count tallies 30-day false positives. Random Forest
maintains 82% satisfaction through uniform false positive distribution compared to 76% for Neural Networks with
concentrated impact. Support Vector Machines achieve 87% satisfaction but suffer 71% satisfaction among users
experiencing successful attacks that evaded detection.

The Artificial Intelligence and Machine Learning Review
[86]



Alert fatigue quantification reveals non-linear degradation in analyst effectiveness. Investigation accuracy maintains
94% for false positive rates below 3%, declining to 81% at 5% and 68% at 7% as analysts develop alarm habituation.
Response time increases from 4.3 minutes at 2% false positive rate to 11.7 minutes at 5%, indicating delayed threat
mitigation. These human factors establish practical false positive ceiling around 4% for maintaining security posture.

5. Discussion and Future Work

5.1 Algorithmic Trade-offs in Production Environments

The empirical characterization establishes performance boundaries guiding algorithm selection under specific
operational constraints. Random Forest classifiers emerge as the balanced solution for organizations processing 10°4 -
1075 daily authentication events. The 94.7% detection accuracy captures mainstream attack patterns while 3.2ms
inference latency maintains user experience. Feature importance rankings provide investigation guidance—identifying
inter-arrival variance and geographic dispersion as primary attack indicators accelerates analyst response. The modular
ensemble structure enables incremental updates: adding trees trained on recent attacks requires 12% of initial training
time while maintaining historical knowledge.

Support Vector Machines occupy specialized niches where precision supersedes recall. Financial transaction
authentication benefits from 2.1% false positive rate when customer friction costs exceed breach risks for specific
transaction categories. The mathematical foundation through margin maximization provides regulatory compliance for
algorithmic accountability requirements. However, O(n?) training complexity limits applicability to datasets below 106
samples, and lack of incremental learning necessitates complete retraining for model updates.

Neural Networks demonstrate untapped potential for sophisticated attack detection, achieving 93.7% accuracy on
compromised accounts where behavioral subtleties evade shallow methods. Hierarchical feature learning captures
complex interactions: temporal patterns across multiple timescales, device fingerprint evolution, and role-based access
deviations. Transfer learning enables model adaptation with 20% of initial training cost. Yet computational
requirements—1,156 seconds training, 5.7ms inference—limit deployment to well-resourced organizations. Model
opacity complicates incident investigation and regulatory compliance where decision explainability is mandated.

Ensemble strategies combining algorithmic strengths warrant investigation. Preliminary stacking experiments with
Random Forest base models and SVM meta-classifier achieve 95.8% accuracy with 2.8% false positive rate, suggesting
complementary signal capture. Weighted voting with algorithm-specific attack specialization—SVM for brute force,
Random Forest for credential stuffing—improves per-attack F1 scores by 3-7%. Dynamic ensemble selection based on
input characteristics could optimize instance-level predictions.

5.2 Limitations and Real-world Deployment Challenges

Dataset representativeness constrains generalization beyond observed organizational contexts. Financial services exhibit
risk-averse behaviors with multi-factor authentication prevalence, healthcare maintains strict access controls under
HIPAA requirements, while technology sectors demonstrate experimental attitudes toward authentication methods.
Models trained on sector-specific data achieve 34% performance degradation when cross-deployed, necessitating
domain adaptation strategies.

Adversarial adaptation presents fundamental challenge to static model deployments. Gradient-based evasion attacks craft
authentication sequences achieving 76% success rate against Neural Networks and 52% against Random Forest.
Attackers observe detection outcomes through login success/failure, enabling iterative refinement toward decision
boundaries. Defensive strategies including adversarial training, gradient masking, and input transformation provide
partial mitigation but reduce benign accuracy by 8-12%.

Integration with legacy infrastructure imposes architectural constraints. SIEM systems designed for rule-based detection
lack machine learning inference capabilities, requiring parallel infrastructure or significant modernization investment.
The 150MB Random Forest model exceeds embedded system memory in branch offices, necessitating edge-cloud
architectures with associated latency and reliability implications. Real-time inference demands conflict with batch-
oriented data pipelines, requiring stream processing infrastructure investment.

Privacy regulations increasingly restrict authentication data processing. Cross-border model training violates data
residency requirements in 67 jurisdictions. User consent for behavioral analysis faces resistance with 31% opt-out rates
in voluntary programs. Differential privacy (¢ = 1.0) degrades model accuracy by 15-20%, while homomorphic
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encryption increases computation by 100-1000x. Federated learning offers promise but introduces complexity from non-
IID distributions across organizational units.

5.3 Future Research Directions and Recommendations

Adversarial robustness demands theoretical advances beyond empirical hardening. Certified defense mechanisms
providing provable bounds against 1 p-norm perturbations could guarantee minimum detection performance despite
adaptive attacks. Game-theoretic frameworks modeling attacker-defender dynamics inform optimal strategies under
resource constraints. Moving target defenses that dynamically adjust detection boundaries increase attack costs while
maintaining usability.

Graph neural architectures operating on authentication networks capture relational structures invisible to independent
event analysis. Preliminary experiments with user-device-location graphs achieve 7% improvement in lateral movement
detection. Temporal graph networks model evolution of authentication relationships, identifying anomalous edge
formations indicating account compromise. Scalability remains challenging with O(|V| + |E|) complexity for graphs with
millions of vertices (users) and edges (authentication events).

Privacy-preserving collaborative learning enables organizations to benefit from collective intelligence without sharing
sensitive data. Secure aggregation protocols allow model updates while hiding individual contributions. Trusted
execution environments provide hardware-enforced isolation for model training on encrypted data. Performance
overhead currently reaches 100-1000x but hardware acceleration and algorithmic optimization rapidly improve
efficiency.

Continuous learning architectures maintaining performance despite distribution shift represent critical capability. Elastic
weight consolidation preserves important parameters while adapting to new patterns. Memory replay buffers retain
historical examples preventing catastrophic forgetting. Progressive networks add capacity for emerging threats while
freezing previous knowledge. The plasticity-stability trade-off requires careful calibration with organizational change
velocity.

Standardized benchmarks advancing enterprise authentication security research require community coordination.
Benchmarks must encompass diverse organizational contexts, realistic attack scenarios including adversarial examples,
and operational constraints including latency, throughput, and false positive tolerance. Privacy-preserving synthetic data
generation could enable public benchmarks while protecting sensitive authentication patterns.
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