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 The rapid expansion of artificial intelligence workloads has dramatically 
increased data center energy consumption and carbon emissions. This paper 
presents a renewable-aware cooperative scheduling approach for distributed AI 
training across geo-distributed data centers. The proposed methodology 
exploits spatial and temporal variations in renewable energy availability to 
minimize carbon footprint while maintaining training performance. A two-
phase optimization framework coordinates workload placement decisions 
across multiple data centers by predicting renewable energy generation 
patterns and carbon intensity fluctuations. Experimental evaluation using real-
world carbon intensity data from six geographic regions demonstrates 47.3% 
carbon emission reduction compared to performance-optimized scheduling, 
achieving 86.2% renewable utilization while maintaining 96.4% deadline 
satisfaction rate. 

1. Introduction 

1.1 Research Background and Motivation 

Global data center electricity consumption reached 460 TWh annually, representing 1.3% of worldwide power demand, 
with projections indicating growth to 554 TWh by 2030 driven primarily by AI workloads [1]. Training large language 
models consumes approximately 1,287 MWh per model, while inference operations account for over 80% of AI-related 
energy consumption across deployment lifecycles. The carbon footprint extends beyond operational emissions to 
encompass embodied carbon from hardware manufacturing and disposal. 

Renewable energy integration presents significant opportunities for emission reduction through exploitation of 
geographic distribution. Solar generation peaks during daytime hours while wind resources strengthen during evening 
periods, creating temporal optimization windows. Carbon intensity fluctuations within electrical grids vary by factors of 
3-5x between high and low periods, while spatial variations across regions exceed 10x between renewable-rich areas 
and fossil fuel-dependent grids [2]. These variations enable strategic workload placement to minimize aggregate carbon 
footprint. 

1.2 Problem Statement 

The fundamental challenge involves scheduling distributed AI training workloads across geo-distributed data centers to 
minimize aggregate carbon emissions while satisfying performance constraints. AI training exhibits unique 
characteristics including checkpoint-based recoverability, iterative execution patterns, and multi-hour execution 
windows enabling temporal and spatial flexibility in placement decisions. The optimization problem encompasses 
competing objectives: carbon footprint minimization, deadline satisfaction, inter-datacenter communication overhead, 
and renewable energy utilization maximization, compounded by prediction uncertainty in renewable generation and 
carbon intensity forecasts [3]. 
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2. Related Work 

2.1 Carbon-Aware Computing in Data Centers 

Carbon-aware computing has emerged as critical for sustainable data center operations. Google's carbon-intelligent 
compute management demonstrates feasibility of large-scale workload shifting through real-time carbon intensity 
monitoring and day-ahead forecasting [2]. Carbon intensity measurement methodologies for cloud environments enable 
consistent accounting across providers [1]. Recent investigations reveal limitations including workload migration 
overhead from data transfer costs and checkpoint creation penalties [4]. Multi-objective optimization frameworks balance 
carbon footprint against quality-of-service metrics, with CASPER achieving 33% carbon reduction while maintaining 
98% SLA compliance [5]. 

2.2 AI Workload Scheduling and Resource Management 

Distributed machine learning introduces unique scheduling challenges from synchronization requirements and 
communication patterns. Online job scheduling algorithms prioritize fairness and throughput through queue-based 
policies [6]. GPU cluster management systems address resource allocation through predictive modeling, with Tiresias 
reducing completion time by 5.5x [7]. Inference optimization targets the 80% energy consumption from serving trained 
models, with Clover achieving 80-90% carbon intensity reduction [8]. Distributed training frameworks optimize training 
time and communication efficiency [9]. 

2.3 Renewable Energy Integration 

Renewable energy integration focuses on maximizing clean energy utilization while maintaining operational reliability. 
GreenSlot pioneered renewable-aware batch scheduling by aligning workload execution with predicted renewable 
availability [10]. Workload management strategies combine renewable awareness with cooling optimization [11]. Storage 
system scheduling incorporates renewable supply variability through adaptive power consumption control [3]. Multi-
renewable energy systems integrate solar, wind, and storage, with edge-cloud continuum scenarios presenting additional 
complexity requiring coordinated scheduling across computing tiers [12]. 

3. Problem Formulation and System Architecture 

3.1 System Architecture Overview 

The system architecture comprises five major components operating in coordinated fashion across geo-distributed 
infrastructure. The Carbon Intensity Monitoring Module continuously tracks real-time carbon intensity values from 
regional electrical grids using Electricity Maps API and WattTime data feeds at 15-minute intervals to capture temporal 
dynamics in grid composition and renewable generation. Measurements incorporate both average grid carbon intensity 
and marginal carbon intensity, providing comprehensive visibility into emission characteristics. The monitoring 
infrastructure employs redundant data sources to ensure reliability, with automatic failover mechanisms activated when 
primary data feeds experience interruptions or report anomalous values. 

The Renewable Generation Forecaster employs temporal fusion transformer networks trained on historical weather 
patterns and generation data to predict renewable availability across 24-48 hour horizons, achieving 87% accuracy for 
day-ahead forecasts under normal meteorological conditions. The forecasting pipeline integrates multiple data sources 
including satellite imagery for cloud cover prediction, numerical weather prediction models for wind speed estimation, 
and historical generation patterns to capture seasonal trends. Prediction uncertainty quantification provides confidence 
intervals for each forecast, enabling risk-aware scheduling decisions that account for prediction variability. 

The Workload Characterization Engine analyzes submitted training jobs to extract key features including GPU 
requirements, estimated execution duration, checkpoint frequency, deadline flexibility, and data dependencies through 
job submission metadata combined with historical execution statistics from similar workload patterns. Feature extraction 
employs machine learning techniques to improve duration estimates over time, learning from actual execution patterns 
to refine future predictions. The engine maintains a comprehensive database of workload profiles, enabling similarity-
based estimation for novel job types. The Scheduling Decision Engine implements core optimization logic, computing 
placement decisions that minimize predicted carbon footprint subject to performance constraints at 1-hour intervals for 
batch scheduling and on-demand for urgent submissions. Decision computation employs parallel processing across 
multiple cores to maintain responsiveness under high submission loads. 
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The Execution and Feedback Controller monitors active jobs through continuous telemetry collection, manages 
checkpoint creation according to configured policies, handles failures through automatic recovery procedures including 
job restart and resource reallocation, and provides comprehensive telemetry for learning-based refinement of scheduling 
policies [13]. The controller implements sophisticated failure detection mechanisms distinguishing transient errors from 
permanent failures, applying appropriate recovery strategies for each failure mode. Performance monitoring tracks key 
metrics including GPU utilization, network bandwidth consumption, and energy usage, feeding this data back to the 
scheduling engine for continuous policy improvement. 

Figure 1: System Architecture Diagram 

 

The figure illustrates five-component architecture spanning three geo-distributed data centers in California, Ireland, and 
Singapore. Each datacenter connects to local electrical grids with distinct carbon intensity profiles displayed as real-time 
waveforms using color coding: green for renewable energy elements, orange for carbon-intensive components, and blue 
for data flows. The Carbon Intensity Monitoring Module appears as distributed sensors feeding into a central aggregation 
dashboard with streaming timelines showing carbon intensity fluctuations (150-400 gCO2e/kWh for California's solar-
dominated grid). The Renewable Generation Forecaster appears as a multi-layer neural network with input nodes for 
weather parameters connecting to output nodes displaying 24-hour predictions. The Workload Characterization Engine 
shows a priority queue of waiting jobs with specifications displayed on information cards. The Scheduling Decision 
Engine appears as a computational nexus with radiating processing pipelines. The Execution and Feedback Controller 
manages active workloads with progress bars, checkpoint symbols, and resource utilization gauges, with feedback arrows 
connecting back to the scheduling engine. 

3.2 Carbon Intensity Modeling 

Carbon intensity quantifies greenhouse gas emissions per unit of electricity consumed, measured in grams of CO2 
equivalent per kilowatt-hour (gCO2e/kWh). Temporal dynamics reflect daily patterns in grid composition, with marginal 
emissions rates varying based on which generation sources respond to demand. The temporal model captures dynamics 
through C_t = α_base × E_base(t) + α_renew × E_renew(t) + α_peak × E_peak(t), where α parameters represent emission 
factors and E functions denote generation mix percentages. Spatial variations stem from differing grid compositions, 
with California's grid ranging from 150-400 gCO2e/kWh while Poland's coal-heavy grid averages 650-800 gCO2e/kWh. 
The spatial model incorporates regional generation portfolios and transmission constraints: C_r = f(G_r^coal, G_r^gas, 
G_r^nuclear, G_r^hydro, G_r^wind, G_r^solar, T_r), where G terms represent generation capacity by source type and 
T_r captures transmission interconnection effects [2]. 

Prediction models integrate multiple forecasting techniques to achieve robust carbon intensity estimates. Short-term 
forecasts leverage Prophet time series models incorporating trend decomposition, seasonal patterns, and holiday effects. 
Medium-range predictions employ LSTM networks with attention mechanisms to capture complex temporal 
dependencies and weather correlations. The prediction ensemble combines multiple model outputs through weighted 
averaging calibrated on historical error distributions, with forecast accuracy degrading from 89% at 1-hour ahead to 76% 
at 24-hours ahead [14]. 
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3.3 Workload Characterization 

Table 1: AI Training Workload Characteristics 

Workload Type GPU Count Duration (hours) 
Checkpoint Freq 
(min) 

Deadline Flex (%) 

Language Model 
Training 

32-128 48-168 30-60 20-40 

Computer Vision 8-64 12-72 15-30 30-50 

Reinforcement 
Learning 

16-256 72-240 60-120 40-60 

Recommendation 
Systems 

8-32 6-48 20-40 25-45 

Each training workload includes computational requirements, temporal constraints, and data dependencies. GPU count 
determines parallelism level and communication overhead. Execution duration estimates derive from profiling with 
typical accuracy within 20% margins. Checkpoint frequency enables preemption and migration with bounded rollback 
cost, with each checkpoint incurring 2-5 minutes of overhead [6]. Deadline flexibility quantifies acceptable delay, 
enabling aggressive carbon optimization through temporal shifting. 

3.4 Optimization Problem Formulation 

Table 2: Optimization Problem Notation 

Symbol Definition Units 

W Set of training workloads - 

T Time horizon (discretized) hours 

R Set of geographic regions - 

x_i,t,r 
Binary placement decision 
variable 

{0,1} 

C_t,r 
Carbon intensity at time t in 
region r 

gCO2e/kWh 

P_i Power consumption of workload i kW 

d_i Deadline for workload i hours 

G_r GPU capacity in region r count 

The scheduling optimization minimizes total carbon emissions while satisfying deadline constraints and resource limits. 
Decision variables x_i,t,r ∈ {0,1} indicate whether workload i executes at time t in region r. The objective function 
Minimize Σ_i Σ_t Σ_r [x_i,t,r × C_t,r × P_i × Δt + γ × D_i,r × I_i,r] aggregates operational carbon and data transfer 
carbon, where C_t,r denotes carbon intensity, P_i represents power consumption, γ is network carbon factor, D_i,r is 
data transfer volume, and I_i,r is a migration indicator [8]. Constraints ensure deadline satisfaction Σ_t (t × x_i,t,r) + E_i 
≤ d_i and resource capacity Σ_i (x_i,t,r × g_i) ≤ G_r. The problem exhibits NP-hard complexity through reduction to 
multi-dimensional bin packing, with computational complexity O(|W| × |T| × |R|). 
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4. Proposed Scheduling Approach 

4.1 Algorithm Design Overview 

The scheduling approach employs a two-phase optimization framework combining day-ahead planning with real-time 
adaptation. The planning phase executes daily to generate baseline schedules leveraging renewable generation forecasts, 
allowing deployment of sophisticated optimization techniques. The adaptation phase operates continuously to handle 
forecast deviations, unexpected arrivals, and failures through faster heuristic methods with latency under 10 seconds [4]. 
The coordination protocol synchronizes decisions across distributed schedulers, with communication overhead bounded 
through delta-based state updates at 15-minute intervals [12]. 

4.2 Key Components and Mechanisms 

A. Carbon-Aware Decision Module 

The decision module implements priority-based allocation enhanced with carbon awareness. Workload prioritization 
considers urgency from deadline proximity, carbon sensitivity from deadline flexibility, and opportunity cost from 
temporal or spatial shifting potential. The priority function P_i = w_1 × U_i + w_2 × F_i + w_3 × O_i combines factors 
through learned weight parameters [5]. 

Table 3: Workload Priority Factors 

Factor Formula Weight 

Urgency U_i=(di−tnow)/E_i 0.35 

Flexibility F_i = flex_i / 100 0.40 

Opportunity O_i=(Cmax−Cforecast)/C_max 0.25 

Placement evaluation examines all feasible time-region combinations, computing expected carbon footprint under 
current forecasts. Carbon cost calculation includes computational emissions and network emissions: Cost_i(t,r) = E_i × 
P_i × C_t,r + D_i → r × γ_network × C_network. 

B. Workload Coordination Strategy 

Distributed training coordination addresses synchronization requirements across geographic boundaries. Parameter 
server architectures centralize model parameters while workers perform local computations, with network latency 
introducing overhead. The coordination strategy selectively places parameter servers in low-carbon regions when latency 
permits [5]. All-reduce communication patterns distribute aggregation across workers. Carbon-aware placement arranges 
topology to minimize communication through high-carbon regions [7]. 

C. Resource Allocation Mechanism 

GPU allocation matches heterogeneous hardware capabilities to workload requirements while optimizing energy 
efficiency. Modern data centers operate mixed GPU generations with varying throughput and power profiles. Energy-
proportional allocation assigns efficient GPUs to long-duration workloads [7]. Dynamic scaling adjusts GPU count during 
execution based on carbon intensity variations. Carbon-aware scaling increases allocation during low-carbon periods to 
exploit renewable surges [13]. 

4.3 Algorithm Description 

Algorithm 1: Renewable-Aware Cooperative Scheduling 

Input: Workload queue W, carbon forecasts C, resources R 

Output: Schedule S 

1: Initialize S ← ∅, available_resources ← R 
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2: Sort W by priority P_i descending 

3: FOR each workload w_i in W DO 

4:   candidates ← [] 

5:   FOR each time t in [s_i, d_i - E_i] DO 

6:     FOR each region r in R DO 

7:       IF Resources_Available(r, t, w_i) THEN 

8:         carbon ← E_i × P_i × C(t,r) + Transfer_Carbon(w_i,r) 

9:         opportunity ← Renewable_Opportunity(t, r, C) 

10:        candidates.append((t, r, carbon, opportunity)) 

11:    END FOR 

12:  END FOR 

13:  IF candidates ≠ ∅ THEN 

14:    (t*, r*) ← Select_Best_Candidate(candidates) 

15:    S ← S ∪ {(w_i, t*, r*)} 

16:    Update_Available_Resources(w_i, t*, r*) 

17:  END IF 

18: END FOR 

19: RETURN S 

The algorithm iterates through workloads in priority order, evaluating feasible placements. Lines 5-12 search time-region 
combinations, computing carbon footprints and opportunity scores. Resource checks ensure capacity satisfaction before 
considering placements. Carbon calculation incorporates computational and transfer emissions [11]. Candidate selection 
employs multi-criteria evaluation balancing carbon minimization with opportunity exploitation. High opportunity scores 
favor placements that exploit predicted renewable surges. 

Figure 2: Algorithm Flow Diagram 

 

The figure depicts algorithmic execution flow through a swim-lane flowchart with five vertical lanes: Workload Queue, 
Priority Calculation, Placement Evaluation, Decision Engine, and Resource Manager. Color coding uses blue for data 
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structures, green for successful operations, orange for conditional branches, and red for constraint violations. The 
Workload Queue displays arriving jobs as stacked cards with attributes (GPU count, duration, deadline). The Priority 
Calculation shows workloads passing through a scoring module with three weighted input streams (urgency in red, 
flexibility in blue, opportunity in green) producing priority values. The Placement Evaluation depicts nested loops 
examining time slots (horizontal timeline) and geographic regions (world map with datacenter locations). Small boxes 
at each intersection calculate carbon components (operational, transfer, migration overhead) summing to total carbon 
displayed as heat-map colored cells from dark red (high cost) to bright green (low cost). The Decision Engine shows 
comparison module evaluating candidates with optimal choice highlighted. The Resource Manager displays dynamic 
capacity tracking through bar charts showing GPU utilization, with counters updating as workloads allocate. Arrows 
between lanes show data flow and control logic with decision diamonds for conditional branches. 

4.4 Complexity Analysis 

Computational complexity analysis reveals scalability characteristics. The outer loop contributes O(|W|) factor, while 
inner loops contribute O(|T| × |R|) per workload. Resource checks require O(|R|) operations, yielding overall time 
complexity O(|W| × |T| × |R|^2), approximately 1.68 billion operations for 1000 workloads, 168 hour horizon, and 10 
regions [9]. Practical optimization employs pruning, incremental updates, parallel evaluation, and caching, reducing 
runtime to under 10 seconds. Space complexity stems from storing candidates with worst case O(|W| × |T| × |R|) memory. 
Memory optimization through streaming evaluation maintains O(|T| × |R|) requirement, keeping total footprint under 
2GB [15]. 

5. Performance Evaluation 

5.1 Experimental Setup 

A. Dataset and Workload Traces 

Experimental evaluation employs real-world AI training traces from production clusters over six months, revealing 847 
unique jobs with GPU allocations from 4 to 256 accelerators and durations spanning 2 to 196 hours. Synthetic generation 
augments traces using fitted distributions: GPU counts follow log-normal (μ=3.2, σ=0.8), durations follow exponential 
(mean 24 hours), deadline flexibility samples uniformly from 20-50%. Carbon intensity data spans six geographic 
regions (California, Texas, Ireland, Singapore, Tokyo, Frankfurt) from Electricity Maps API at 15-minute granularity 
covering January-June 2024. 

B. Baseline Methods 

Performance comparison includes five baselines: Random assigns workloads randomly; Performance-First minimizes 
completion time ignoring carbon; Greedy-Carbon selects minimum instantaneous carbon intensity; Round-Robin 
distributes evenly across regions; CASPER implements state-of-the-art carbon-aware scheduling adapted to AI training. 

C. Evaluation Metrics 

Table 4: Evaluation Metrics 

Metric Calculation Target 

Total Carbon Footprint ΣEi × Pi × Ci Minimize 

Carbon Reduction Rate 
(C_base - C_proposed) / C_base × 

100% 
Maximize 

Deadline Satisfaction N_met / N_total × 100% ≥95% 

Renewable Utilization E_renewable / E_total × 100% Maximize 
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5.2 Experimental Results 

A. Carbon Footprint Reduction 

The proposed method achieves 1112.4 kg CO2e total emissions across the test workload set, representing 47.3% 
reduction compared to performance-optimized scheduling (2109.6 kg CO2e) and 31.8% improvement over greedy 
carbon-aware baseline (1685.3 kg CO2e). Renewable energy utilization reaches 86.2%, substantially exceeding 
conventional methods including Performance-First (53.7%) and state-of-the-art CASPER (74.8%), through coordinated 
exploitation of renewable availability predictions across multiple geographic regions. 

Detailed analysis reveals that temporal shifting contributes approximately 32% of total carbon savings while spatial load 
balancing provides 15% reduction. Regional carbon intensity variance creates substantial optimization opportunities, 
where California's solar-dominated grid exhibits 450 gCO2e/kWh daytime minimum versus 620 gCO2e/kWh evening 
peak, enabling strategic delay of flexible workloads to coincide with peak solar generation periods. Ireland's wind-
dominated grid shows complementary patterns with minimum carbon intensity during overnight hours when wind 
resources peak. 

Workload-level analysis reveals that long-duration training jobs (>48 hours) achieve average carbon reductions of 
52.7%, exceeding the overall average due to increased temporal flexibility enabling multiple renewable alignment 
opportunities during execution. Short-duration jobs (<12 hours) achieve more modest reductions of 38.4%, constrained 
by limited temporal shifting windows. 

B. Performance Impact Analysis 

The scheduler achieves 96.4% deadline satisfaction rate, with only 3.6% of jobs experiencing completion delays beyond 
specified deadlines. Among these delayed jobs, average deadline violation measures 2.7 hours, representing modest 
impact given typical job durations ranging from 20 to 40 hours. Performance-First baseline naturally achieves highest 
deadline satisfaction at 98.8% through aggressive prioritization of completion time, accepting higher carbon emissions 
to minimize any execution delays. 

Average job completion time increases by 8.3% under renewable-aware scheduling compared to performance-optimized 
baseline, measuring 28.6 hours versus 26.4 hours. This modest increase stems primarily from strategic delay of jobs to 
align with renewable energy availability windows rather than from resource contention. Detailed analysis shows that 
73% of completion time increase derives from intentional temporal shifting, while only 27% results from increased 
queuing delays. Completion time variance remains well-controlled with 95th percentile at 42.1 hours versus 38.9 hours 
for baseline, maintaining predictable performance characteristics important for production deployment. 

Figure 3: Performance-Carbon Tradeoff Analysis 
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The figure presents three-panel visualization exploring carbon-performance relationships. The main panel (65% width) 
displays scatter plot with normalized carbon footprint on x-axis (0-100%) and normalized completion time on y-axis (0-
100%). Six methods appear as circular markers with size proportional to deadline satisfaction and color encoding 
renewable utilization (yellow 40-50% to dark green >85%). Random plots at (87%, 76%) with small yellow marker. 
Performance-First at (62%, 12%) with large light-green marker. Greedy-Carbon at (48%, 45%) with medium green 
marker. CASPER at (38%, 34%) with large forest-green marker. Proposed dominates at (19%, 28%) with largest dark-
green marker. Black Pareto frontier curve connects non-dominated solutions. Dashed vectors from dominated solutions 
show improvement potential with annotations ("32% carbon reduction possible" from Performance-First). Labels show 
tradeoff ratios ("1% time increase = 5.7% carbon reduction" at Proposed location). Top-right panel (20% width) shows 
vertical bar chart comparing absolute emissions from 3847.2 kg (Random) to 1112.4 kg (Proposed) with percentage 
reduction labels. Bottom-right panel displays stacked horizontal bars decomposing emissions into operational (solid fill) 
versus transfer carbon (diagonal stripes) for each method, with annotations highlighting "Proposed reduces both 
operational and transfer carbon through coordinated temporal-spatial optimization." 

C. Renewable Utilization and Scalability 

Temporal alignment with renewable generation patterns drives substantial clean energy utilization improvements. The 
proposed scheduler achieves 86.2% average renewable energy fraction across all executed workloads, compared to 
53.7% for performance-optimized baseline and 74.8% for CASPER state-of-the-art method. 

Regional analysis reveals substantial geographic variation. California achieves highest utilization at 93.7%, leveraging 
abundant solar resources through strategic concentration of workloads during midday peak generation periods. Ireland 
follows closely at 91.2%, exploiting consistent wind resources. Texas achieves 84.3% utilization through mixed solar 
and wind resources. Singapore exhibits lowest renewable fraction at 72.4%, constrained by natural gas-dominated grid 
composition. 

Time-of-day analysis demonstrates sophisticated exploitation of renewable generation patterns. Solar-rich regions 
including California and Texas experience peak workload allocation during midday hours 11:00-15:00 when 
photovoltaic generation maximizes. Wind-dependent regions including Ireland show elevated allocation during evening 
and overnight hours 20:00-06:00, coinciding with typical wind resource patterns. This temporal coordination enables 
continuous high-utilization operation by shifting workloads to follow renewable availability across time zones. 

Computational scalability evaluation examines scheduling performance across varying problem scales from 100 to 5000 
concurrent workloads. Decision latency grows sublinearly with workload count, measuring 3.1 seconds for 100 jobs, 8.2 
seconds for 1000 jobs, and 31.4 seconds for 5000 jobs. Memory consumption scales linearly, measuring 247 MB for 100 
workloads, 1.83 GB for 1000 workloads, and 8.96 GB for 5000 workloads. Carbon reduction effectiveness improves 
slightly at larger scales: 43.1% at 100 workload scale, 47.3% at 1000 workload scale, and 49.8% at 5000 workload scale. 

D. Sensitivity Analysis 

Parameter sensitivity analysis examines robustness to varying problem characteristics. Deadline flexibility significantly 
impacts achievable carbon reduction, with results spanning from 31.2% reduction at 10% flexibility to 58.7% reduction 
at 60% flexibility. The relationship exhibits diminishing returns beyond 40% flexibility threshold as temporal 
optimization opportunities saturate. Prediction accuracy directly influences scheduling effectiveness. Carbon reduction 
rates measure 47.3% at baseline 87% forecast accuracy, decreasing to 39.4% at 75% accuracy and 28.6% at 60% 
accuracy. Forecast accuracy above 90% yields modest additional improvements, suggesting diminishing returns from 
prediction enhancement. 

Geographic region count sensitivity explores scaling across distributed infrastructure sizes. Reduction rates improve 
from 32.1% with 2 regions to 47.3% with 6 regions, then plateau at 49.7% with 10 regions. Coordination overhead grows 
modestly from 4.2 seconds to 11.6 seconds. Optimal operational point occurs at 6-8 regions, balancing carbon reduction 
benefits against coordination complexity. 

Workload composition sensitivity examines robustness across different AI training workload mixes. Language model 
training dominated scenarios achieve 52.3% carbon reduction, benefiting from long execution durations. Computer 
vision training scenarios measure 44.7% reduction with shorter durations. Reinforcement learning workloads achieve 
56.1% reduction. Mixed workload compositions achieve balanced 47.3% reduction. 
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6. Conclusion 

This paper presented a renewable-aware cooperative scheduling approach for distributed AI training workloads across 
geo-distributed data centers. The two-phase optimization framework combines day-ahead planning with real-time 
adaptation. Experimental evaluation demonstrates 47.3% carbon emission reduction while maintaining 96.4% deadline 
satisfaction, with renewable utilization reaching 86.2%. The methodology addresses key challenges including prediction 
uncertainty, workload coordination, and performance-carbon tradeoff management, providing practical foundation for 
sustainable AI infrastructure deployment. 
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