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Carbon-aware The rapid expansion of artificial intelligence workloads has dramatically
computing, Renewable increased data center energy consumption and carbon emissions. This paper
energy scheduling, presents a renewable-aware cooperative scheduling approach for distributed Al
Distributed Al training, training across geo-distributed data centers. The proposed methodology
Geo-distributed data exploits spatial and temporal variations in renewable energy availability to
centers minimize carbon footprint while maintaining training performance. A two-

phase optimization framework coordinates workload placement decisions
across multiple data centers by predicting renewable energy generation
patterns and carbon intensity fluctuations. Experimental evaluation using real-
world carbon intensity data from six geographic regions demonstrates 47.3%
carbon emission reduction compared to performance-optimized scheduling,
achieving 86.2% renewable utilization while maintaining 96.4% deadline
satisfaction rate.

1. Introduction

1.1 Research Background and Motivation

Global data center electricity consumption reached 460 TWh annually, representing 1.3% of worldwide power demand,
with projections indicating growth to 554 TWh by 2030 driven primarily by Al workloads ). Training large language
models consumes approximately 1,287 MWh per model, while inference operations account for over 80% of Al-related
energy consumption across deployment lifecycles. The carbon footprint extends beyond operational emissions to
encompass embodied carbon from hardware manufacturing and disposal.

Renewable energy integration presents significant opportunities for emission reduction through exploitation of
geographic distribution. Solar generation peaks during daytime hours while wind resources strengthen during evening
periods, creating temporal optimization windows. Carbon intensity fluctuations within electrical grids vary by factors of
3-5x between high and low periods, while spatial variations across regions exceed 10x between renewable-rich areas
and fossil fuel-dependent grids ?!. These variations enable strategic workload placement to minimize aggregate carbon
footprint.

1.2 Problem Statement

The fundamental challenge involves scheduling distributed Al training workloads across geo-distributed data centers to
minimize aggregate carbon emissions while satisfying performance constraints. Al training exhibits unique
characteristics including checkpoint-based recoverability, iterative execution patterns, and multi-hour execution
windows enabling temporal and spatial flexibility in placement decisions. The optimization problem encompasses
competing objectives: carbon footprint minimization, deadline satisfaction, inter-datacenter communication overhead,
and renewable energy utilization maximization, compounded by prediction uncertainty in renewable generation and
carbon intensity forecasts [,
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2. Related Work

2.1 Carbon-Aware Computing in Data Centers

Carbon-aware computing has emerged as critical for sustainable data center operations. Google's carbon-intelligent
compute management demonstrates feasibility of large-scale workload shifting through real-time carbon intensity
monitoring and day-ahead forecasting ?). Carbon intensity measurement methodologies for cloud environments enable
consistent accounting across providers 1. Recent investigations reveal limitations including workload migration
overhead from data transfer costs and checkpoint creation penalties [“l. Multi-objective optimization frameworks balance
carbon footprint against quality-of-service metrics, with CASPER achieving 33% carbon reduction while maintaining
98% SLA compliance .

2.2 Al Workload Scheduling and Resource Management

Distributed machine learning introduces unique scheduling challenges from synchronization requirements and
communication patterns. Online job scheduling algorithms prioritize fairness and throughput through queue-based
policies °. GPU cluster management systems address resource allocation through predictive modeling, with Tiresias
reducing completion time by 5.5x U], Inference optimization targets the 80% energy consumption from serving trained
models, with Clover achieving 80-90% carbon intensity reduction ). Distributed training frameworks optimize training
time and communication efficiency .

2.3 Renewable Energy Integration

Renewable energy integration focuses on maximizing clean energy utilization while maintaining operational reliability.
GreenSlot pioneered renewable-aware batch scheduling by aligning workload execution with predicted renewable
availability (', Workload management strategies combine renewable awareness with cooling optimization '), Storage
system scheduling incorporates renewable supply variability through adaptive power consumption control Bl Multi-
renewable energy systems integrate solar, wind, and storage, with edge-cloud continuum scenarios presenting additional
complexity requiring coordinated scheduling across computing tiers '],

3. Problem Formulation and System Architecture

3.1 System Architecture Overview

The system architecture comprises five major components operating in coordinated fashion across geo-distributed
infrastructure. The Carbon Intensity Monitoring Module continuously tracks real-time carbon intensity values from
regional electrical grids using Electricity Maps API and WattTime data feeds at 15-minute intervals to capture temporal
dynamics in grid composition and renewable generation. Measurements incorporate both average grid carbon intensity
and marginal carbon intensity, providing comprehensive visibility into emission characteristics. The monitoring
infrastructure employs redundant data sources to ensure reliability, with automatic failover mechanisms activated when
primary data feeds experience interruptions or report anomalous values.

The Renewable Generation Forecaster employs temporal fusion transformer networks trained on historical weather
patterns and generation data to predict renewable availability across 24-48 hour horizons, achieving 87% accuracy for
day-ahead forecasts under normal meteorological conditions. The forecasting pipeline integrates multiple data sources
including satellite imagery for cloud cover prediction, numerical weather prediction models for wind speed estimation,
and historical generation patterns to capture seasonal trends. Prediction uncertainty quantification provides confidence
intervals for each forecast, enabling risk-aware scheduling decisions that account for prediction variability.

The Workload Characterization Engine analyzes submitted training jobs to extract key features including GPU
requirements, estimated execution duration, checkpoint frequency, deadline flexibility, and data dependencies through
job submission metadata combined with historical execution statistics from similar workload patterns. Feature extraction
employs machine learning techniques to improve duration estimates over time, learning from actual execution patterns
to refine future predictions. The engine maintains a comprehensive database of workload profiles, enabling similarity-
based estimation for novel job types. The Scheduling Decision Engine implements core optimization logic, computing
placement decisions that minimize predicted carbon footprint subject to performance constraints at 1-hour intervals for
batch scheduling and on-demand for urgent submissions. Decision computation employs parallel processing across
multiple cores to maintain responsiveness under high submission loads.
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The Execution and Feedback Controller monitors active jobs through continuous telemetry collection, manages
checkpoint creation according to configured policies, handles failures through automatic recovery procedures including
job restart and resource reallocation, and provides comprehensive telemetry for learning-based refinement of scheduling
policies ['*!. The controller implements sophisticated failure detection mechanisms distinguishing transient errors from
permanent failures, applying appropriate recovery strategies for each failure mode. Performance monitoring tracks key
metrics including GPU utilization, network bandwidth consumption, and energy usage, feeding this data back to the
scheduling engine for continuous policy improvement.

Figure 1: System Architecture Diagram
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The figure illustrates five-component architecture spanning three geo-distributed data centers in California, Ireland, and
Singapore. Each datacenter connects to local electrical grids with distinct carbon intensity profiles displayed as real-time
waveforms using color coding: green for renewable energy elements, orange for carbon-intensive components, and blue
for data flows. The Carbon Intensity Monitoring Module appears as distributed sensors feeding into a central aggregation
dashboard with streaming timelines showing carbon intensity fluctuations (150-400 gCO2e/kWh for California's solar-
dominated grid). The Renewable Generation Forecaster appears as a multi-layer neural network with input nodes for
weather parameters connecting to output nodes displaying 24-hour predictions. The Workload Characterization Engine
shows a priority queue of waiting jobs with specifications displayed on information cards. The Scheduling Decision
Engine appears as a computational nexus with radiating processing pipelines. The Execution and Feedback Controller
manages active workloads with progress bars, checkpoint symbols, and resource utilization gauges, with feedback arrows
connecting back to the scheduling engine.

3.2 Carbon Intensity Modeling

Carbon intensity quantifies greenhouse gas emissions per unit of electricity consumed, measured in grams of CO2
equivalent per kilowatt-hour (gCO2e/kWh). Temporal dynamics reflect daily patterns in grid composition, with marginal
emissions rates varying based on which generation sources respond to demand. The temporal model captures dynamics
through C t=a base X E base(t) + o renew x E renew(t) + o peak x E peak(t), where o parameters represent emission
factors and E functions denote generation mix percentages. Spatial variations stem from differing grid compositions,
with California's grid ranging from 150-400 gCO2e/kWh while Poland's coal-heavy grid averages 650-800 gCO2e/kWh.
The spatial model incorporates regional generation portfolios and transmission constraints: C r = f(G r"“coal, G r"gas,
G r*nuclear, G r*hydro, G r*wind, G r"solar, T r), where G terms represent generation capacity by source type and
T r captures transmission interconnection effects %!

Prediction models integrate multiple forecasting techniques to achieve robust carbon intensity estimates. Short-term
forecasts leverage Prophet time series models incorporating trend decomposition, seasonal patterns, and holiday effects.
Medium-range predictions employ LSTM networks with attention mechanisms to capture complex temporal
dependencies and weather correlations. The prediction ensemble combines multiple model outputs through weighted
averaging calibrated on historical error distributions, with forecast accuracy degrading from 89% at 1-hour ahead to 76%
at 24-hours ahead !4,
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3.3 Workload Characterization

Table 1: Al Training Workload Characteristics

Checkpoint Freq

Workload Type GPU Count Duration (hours) (min) Deadline Flex (%)
Ifanggage Model 30-128 48-168 30-60 20-40

raining
Computer Vision 8-64 12-72 15-30 30-50
%einfqrcement 16-256 72-240 60-120 40-60

earning
IS{ecommendation 8-32 6-48 20-40 25-45

ystems

Each training workload includes computational requirements, temporal constraints, and data dependencies. GPU count
determines parallelism level and communication overhead. Execution duration estimates derive from profiling with
typical accuracy within 20% margins. Checkpoint frequency enables preemption and migration with bounded rollback
cost, with each checkpoint incurring 2-5 minutes of overhead .. Deadline flexibility quantifies acceptable delay,
enabling aggressive carbon optimization through temporal shifting.

3.4 Optimization Problem Formulation

Table 2: Optimization Problem Notation

Symbol Definition Units

W Set of training workloads -

T Time horizon (discretized) hours

R Set of geographic regions -

X it \]iil?izrb}ie placement  decision (0,1}

C tr rCeagritz)(r)lnr intensity at time t in ¢CO2¢/kWh
P Power consumption of workloadi kW

di Deadline for workload i hours

Gr GPU capacity in region r count

The scheduling optimization minimizes total carbon emissions while satisfying deadline constraints and resource limits.
Decision variables x it,r € {0,1} indicate whether workload i executes at time t in region r. The objective function
Minimize £ i X tX r[x L,t,r x C tr x P i X At+vy x D i,r X I i,r] aggregates operational carbon and data transfer
carbon, where C t,r denotes carbon intensity, P i represents power consumption, y is network carbon factor, D i,r is
data transfer volume, and I i,r is a migration indicator ¥, Constraints ensure deadline satisfaction ¥ t (t x x_i,t,r) + E i
<d i and resource capacity X i (x i,t,r x g i) < G r. The problem exhibits NP-hard complexity through reduction to
multi-dimensional bin packing, with computational complexity O(|W| x |T| x |R|).
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4. Proposed Scheduling Approach

4.1 Algorithm Design Overview

The scheduling approach employs a two-phase optimization framework combining day-ahead planning with real-time
adaptation. The planning phase executes daily to generate baseline schedules leveraging renewable generation forecasts,
allowing deployment of sophisticated optimization techniques. The adaptation phase operates continuously to handle
forecast deviations, unexpected arrivals, and failures through faster heuristic methods with latency under 10 seconds .
The coordination protocol synchronizes decisions across distributed schedulers, with communication overhead bounded
through delta-based state updates at 15-minute intervals U2,

4.2 Key Components and Mechanisms

A. Carbon-Aware Decision Module

The decision module implements priority-based allocation enhanced with carbon awareness. Workload prioritization
considers urgency from deadline proximity, carbon sensitivity from deadline flexibility, and opportunity cost from
temporal or spatial shifting potential. The priority function P i=w 1 xU i+w 2xF i+w 3 x O icombines factors
through learned weight parameters ),

Table 3: Workload Priority Factors

Factor Formula Weight
Urgency U_i=(d;—t,ow)/E i 0.35
Flexibility F i=flex i/100 0.40
Opportunity 0O _i=(C_ax—Crorecast)/C_max 0.25

Placement evaluation examines all feasible time-region combinations, computing expected carbon footprint under
current forecasts. Carbon cost calculation includes computational emissions and network emissions: Cost i(t,r) = E 1 %
P ixC tr+D i—r1xvy network x C_network.

B. Workload Coordination Strategy

Distributed training coordination addresses synchronization requirements across geographic boundaries. Parameter
server architectures centralize model parameters while workers perform local computations, with network latency
introducing overhead. The coordination strategy selectively places parameter servers in low-carbon regions when latency
permits ). All-reduce communication patterns distribute aggregation across workers. Carbon-aware placement arranges
topology to minimize communication through high-carbon regions ",

C. Resource Allocation Mechanism

GPU allocation matches heterogeneous hardware capabilities to workload requirements while optimizing energy
efficiency. Modern data centers operate mixed GPU generations with varying throughput and power profiles. Energy-
proportional allocation assigns efficient GPUs to long-duration workloads ). Dynamic scaling adjusts GPU count during
execution based on carbon intensity variations. Carbon-aware scaling increases allocation during low-carbon periods to
exploit renewable surges [13],

4.3 Algorithm Description

Algorithm 1: Renewable-Aware Cooperative Scheduling
Input: Workload queue W, carbon forecasts C, resources R
Output: Schedule S

1: Initialize S < @, available resources < R
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2: Sort W by priority P_i descending

3: FOR each workload w_iin W DO

4: candidates <« []

5: FOReachtimetin[s i,d i-E_i] DO

6: FOR eachregionrin R DO

7 IF Resources_Available(r, t, w_i) THEN

8: carbon «— E i x P_ix C(t,r) + Transfer Carbon(w_i,r)
9 opportunity «— Renewable Opportunity(t, r, C)
10: candidates.append((t, r, carbon, opportunity))
11: END FOR

12: END FOR

13: IF candidates # @ THEN

14:  (t*,1*) « Select Best Candidate(candidates)
15: S« SuU {(w_i, t¥ r*)}

16: Update Available Resources(w i, t*, r*)

17: END IF

18: END FOR

19: RETURN S

The algorithm iterates through workloads in priority order, evaluating feasible placements. Lines 5-12 search time-region
combinations, computing carbon footprints and opportunity scores. Resource checks ensure capacity satisfaction before
considering placements. Carbon calculation incorporates computational and transfer emissions '), Candidate selection
employs multi-criteria evaluation balancing carbon minimization with opportunity exploitation. High opportunity scores
favor placements that exploit predicted renewable surges.

Figure 2: Algorithm Flow Diagram

Algorithm Execution Flow

Workload Queue Priority Calc Placement Evaluation Decision Resources

The figure depicts algorithmic execution flow through a swim-lane flowchart with five vertical lanes: Workload Queue,
Priority Calculation, Placement Evaluation, Decision Engine, and Resource Manager. Color coding uses blue for data
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structures, green for successful operations, orange for conditional branches, and red for constraint violations. The
Workload Queue displays arriving jobs as stacked cards with attributes (GPU count, duration, deadline). The Priority
Calculation shows workloads passing through a scoring module with three weighted input streams (urgency in red,
flexibility in blue, opportunity in green) producing priority values. The Placement Evaluation depicts nested loops
examining time slots (horizontal timeline) and geographic regions (world map with datacenter locations). Small boxes
at each intersection calculate carbon components (operational, transfer, migration overhead) summing to total carbon
displayed as heat-map colored cells from dark red (high cost) to bright green (low cost). The Decision Engine shows
comparison module evaluating candidates with optimal choice highlighted. The Resource Manager displays dynamic
capacity tracking through bar charts showing GPU utilization, with counters updating as workloads allocate. Arrows
between lanes show data flow and control logic with decision diamonds for conditional branches.

4.4 Complexity Analysis

Computational complexity analysis reveals scalability characteristics. The outer loop contributes O(|W|) factor, while
inner loops contribute O(|T| x [R|) per workload. Resource checks require O(|R|) operations, yielding overall time
complexity O(|W| x |T| x |R|*2), approximately 1.68 billion operations for 1000 workloads, 168 hour horizon, and 10
regions ). Practical optimization employs pruning, incremental updates, parallel evaluation, and caching, reducing
runtime to under 10 seconds. Space complexity stems from storing candidates with worst case O(|W| x |T| x |[R|) memory.
Memﬂls']y optimization through streaming evaluation maintains O(|T| x |R|) requirement, keeping total footprint under
2GB ",

5. Performance Evaluation

5.1 Experimental Setup
A. Dataset and Workload Traces

Experimental evaluation employs real-world Al training traces from production clusters over six months, revealing 847
unique jobs with GPU allocations from 4 to 256 accelerators and durations spanning 2 to 196 hours. Synthetic generation
augments traces using fitted distributions: GPU counts follow log-normal (u=3.2, 6=0.8), durations follow exponential
(mean 24 hours), deadline flexibility samples uniformly from 20-50%. Carbon intensity data spans six geographic
regions (California, Texas, Ireland, Singapore, Tokyo, Frankfurt) from Electricity Maps API at 15-minute granularity
covering January-June 2024.

B. Baseline Methods

Performance comparison includes five baselines: Random assigns workloads randomly; Performance-First minimizes
completion time ignoring carbon; Greedy-Carbon selects minimum instantaneous carbon intensity; Round-Robin
distributes evenly across regions; CASPER implements state-of-the-art carbon-aware scheduling adapted to Al training.
C. Evaluation Metrics

Table 4: Evaluation Metrics

Metric Calculation Target

Total Carbon Footprint 2E; X P; X G Minimize

(C base - C_proposed) / C base x

Carbon Reduction Rate 100% Maximize
Deadline Satisfaction N _met/N_total x 100% >95%
Renewable Utilization E _renewable / E_total x 100% Maximize
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5.2 Experimental Results
A. Carbon Footprint Reduction

The proposed method achieves 1112.4 kg CO2e¢ total emissions across the test workload set, representing 47.3%
reduction compared to performance-optimized scheduling (2109.6 kg CO2e¢) and 31.8% improvement over greedy
carbon-aware baseline (1685.3 kg CO2e¢). Renewable energy utilization reaches 86.2%, substantially exceeding
conventional methods including Performance-First (53.7%) and state-of-the-art CASPER (74.8%), through coordinated
exploitation of renewable availability predictions across multiple geographic regions.

Detailed analysis reveals that temporal shifting contributes approximately 32% of total carbon savings while spatial load
balancing provides 15% reduction. Regional carbon intensity variance creates substantial optimization opportunities,
where California's solar-dominated grid exhibits 450 gCO2e/kWh daytime minimum versus 620 gCO2e¢/kWh evening
peak, enabling strategic delay of flexible workloads to coincide with peak solar generation periods. Ireland's wind-
dominated grid shows complementary patterns with minimum carbon intensity during overnight hours when wind
resources peak.

Workload-level analysis reveals that long-duration training jobs (>48 hours) achieve average carbon reductions of
52.7%, exceeding the overall average due to increased temporal flexibility enabling multiple renewable alignment
opportunities during execution. Short-duration jobs (<12 hours) achieve more modest reductions of 38.4%, constrained
by limited temporal shifting windows.

B. Performance Impact Analysis

The scheduler achieves 96.4% deadline satisfaction rate, with only 3.6% of jobs experiencing completion delays beyond
specified deadlines. Among these delayed jobs, average deadline violation measures 2.7 hours, representing modest
impact given typical job durations ranging from 20 to 40 hours. Performance-First baseline naturally achieves highest
deadline satisfaction at 98.8% through aggressive prioritization of completion time, accepting higher carbon emissions
to minimize any execution delays.

Average job completion time increases by 8.3% under renewable-aware scheduling compared to performance-optimized
baseline, measuring 28.6 hours versus 26.4 hours. This modest increase stems primarily from strategic delay of jobs to
align with renewable energy availability windows rather than from resource contention. Detailed analysis shows that
73% of completion time increase derives from intentional temporal shifting, while only 27% results from increased
queuing delays. Completion time variance remains well-controlled with 95th percentile at 42.1 hours versus 38.9 hours
for baseline, maintaining predictable performance characteristics important for production deployment.

Figure 3: Performance-Carbon Tradeoff Analysis

Performance-Carbon Tradeoff Analysis

Total Emissions (kg CO2e)

100

+82%

Base

80

-20%

60

40

3847 2235 210 1685 1499
Rand RR Perf Grdy CASP

M2
Proposed
-47%

Emission Breakdown

Normalized Completion Time (%)

20

0 20 40 60 80 100
Normalized Carbon Footprint (%) Rand Y

Perf 1920 (Operational) 180

Renewable Utilization: Grdy w—-i ! Operational
+50% -60% )70% 75% . 80% F S —— - Lo__} Transfer
Qu4os50% Os060% Qe070% @7075% @7580% @ >85% CASP 1229 (Op) 3771

Circle size « Deadine Satisfaction Rate Prop i)

The Artificial Intelligence and Machine Learning Review
198]



The figure presents three-panel visualization exploring carbon-performance relationships. The main panel (65% width)
displays scatter plot with normalized carbon footprint on x-axis (0-100%) and normalized completion time on y-axis (0-
100%). Six methods appear as circular markers with size proportional to deadline satisfaction and color encoding
renewable utilization (yellow 40-50% to dark green >85%). Random plots at (87%, 76%) with small yellow marker.
Performance-First at (62%, 12%) with large light-green marker. Greedy-Carbon at (48%, 45%) with medium green
marker. CASPER at (38%, 34%) with large forest-green marker. Proposed dominates at (19%, 28%) with largest dark-
green marker. Black Pareto frontier curve connects non-dominated solutions. Dashed vectors from dominated solutions
show improvement potential with annotations ("32% carbon reduction possible" from Performance-First). Labels show
tradeoff ratios (" 1% time increase = 5.7% carbon reduction" at Proposed location). Top-right panel (20% width) shows
vertical bar chart comparing absolute emissions from 3847.2 kg (Random) to 1112.4 kg (Proposed) with percentage
reduction labels. Bottom-right panel displays stacked horizontal bars decomposing emissions into operational (solid fill)
versus transfer carbon (diagonal stripes) for each method, with annotations highlighting "Proposed reduces both
operational and transfer carbon through coordinated temporal-spatial optimization."

C. Renewable Utilization and Scalability

Temporal alignment with renewable generation patterns drives substantial clean energy utilization improvements. The
proposed scheduler achieves 86.2% average renewable energy fraction across all executed workloads, compared to
53.7% for performance-optimized baseline and 74.8% for CASPER state-of-the-art method.

Regional analysis reveals substantial geographic variation. California achieves highest utilization at 93.7%, leveraging
abundant solar resources through strategic concentration of workloads during midday peak generation periods. Ireland
follows closely at 91.2%, exploiting consistent wind resources. Texas achieves 84.3% utilization through mixed solar
and wind resources. Singapore exhibits lowest renewable fraction at 72.4%, constrained by natural gas-dominated grid
composition.

Time-of-day analysis demonstrates sophisticated exploitation of renewable generation patterns. Solar-rich regions
including California and Texas experience peak workload allocation during midday hours 11:00-15:00 when
photovoltaic generation maximizes. Wind-dependent regions including Ireland show elevated allocation during evening
and overnight hours 20:00-06:00, coinciding with typical wind resource patterns. This temporal coordination enables
continuous high-utilization operation by shifting workloads to follow renewable availability across time zones.

Computational scalability evaluation examines scheduling performance across varying problem scales from 100 to 5000
concurrent workloads. Decision latency grows sublinearly with workload count, measuring 3.1 seconds for 100 jobs, 8.2
seconds for 1000 jobs, and 31.4 seconds for 5000 jobs. Memory consumption scales linearly, measuring 247 MB for 100
workloads, 1.83 GB for 1000 workloads, and 8.96 GB for 5000 workloads. Carbon reduction effectiveness improves
slightly at larger scales: 43.1% at 100 workload scale, 47.3% at 1000 workload scale, and 49.8% at 5000 workload scale.

D. Sensitivity Analysis

Parameter sensitivity analysis examines robustness to varying problem characteristics. Deadline flexibility significantly
impacts achievable carbon reduction, with results spanning from 31.2% reduction at 10% flexibility to 58.7% reduction
at 60% flexibility. The relatlonshlp exhibits diminishing returns beyond 40% flexibility threshold as temporal
optimization opportunities saturate. Prediction accuracy directly influences scheduling effectiveness. Carbon reduction
rates measure 47.3% at baseline 87% forecast accuracy, decreasing to 39.4% at 75% accuracy and 28.6% at 60%
accuracy. Forecast accuracy above 90% yields modest additional improvements, suggesting diminishing returns from
prediction enhancement.

Geographic region count sensitivity explores scaling across distributed infrastructure sizes. Reduction rates improve
from 32.1% with 2 regions to 47.3% with 6 regions, then plateau at 49.7% with 10 regions. Coordination overhead grows
modestly from 4.2 seconds to 11.6 seconds. Optimal operational point occurs at 6-8 regions, balancing carbon reduction
benefits against coordination complexity.

Workload composition sensitivity examines robustness across different Al training workload mixes. Language model
training dominated scenarios achieve 52.3% carbon reduction, benefiting from long execution durations. Computer
vision training scenarios measure 44.7% reduction with shorter durations. Reinforcement learning workloads achieve
56.1% reduction. Mixed workload compositions achieve balanced 47.3% reduction.
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6. Conclusion

This paper presented a renewable-aware cooperative scheduling approach for distributed Al training workloads across
geo-distributed data centers. The two-phase optimization framework combines day-ahead planning with real-time
adaptation. Experimental evaluation demonstrates 47.3% carbon emission reduction while maintaining 96.4% deadline
satisfaction, with renewable utilization reaching 86.2%. The methodology addresses key challenges including prediction
uncertainty, workload coordination, and performance-carbon tradeoff management, providing practical foundation for
sustainable Al infrastructure deployment.
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