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 Mobile in-app browsers have become primary channels for digital advertising, 
processing billions of daily ad impressions. This infrastructure faces escalating 
threats from sophisticated click fraud operations that exploit behavioral blind 
spots unique to WebView environments. We present a comprehensive analysis 
of fraudulent click patterns through multi-dimensional behavioral feature 
extraction spanning user interaction sequences, device fingerprints, and 
network-level signals. Our approach characterizes the distinct temporal, 
spatial, and contextual attributes that differentiate automated fraud from 
genuine user engagement across 847,293 advertising sessions. The detection 
framework achieves 94.7% precision and 91.3% recall in identifying 
coordinated click fraud, traffic hijacking, and ad injection attacks while 
maintaining privacy-preserving data collection boundaries. Experimental 
validation demonstrates robustness against evolving evasion techniques and 
scalability for real-time deployment in production advertising systems serving 
over 10 million daily active users. 

1. Introduction

1.1 Background and Motivation 

The mobile advertising ecosystem has evolved into a multi-billion dollar infrastructure where in-app browsers (IABs) 
mediate over 63% of mobile web traffic originating from application contexts. Recent industry reports estimate annual 
losses exceeding $84 billion from advertising fraud globally, with mobile platforms accounting for approximately 47% 
of this financial impactError! Reference source not found. The architectural complexity of IAB environments 
introduces unique attack surfaces absent from traditional web browsers. WebView components embedded within mobile 
applications establish bidirectional communication channels through JavaScript bridge mechanisms, creating 
opportunities for malicious actors to manipulate ad delivery pathways and inject fraudulent interaction patterns. 

Advertising platforms processing over 2.3 billion daily bid requests must distinguish genuine user engagement from 
automated scripts, coordinated bot networks, and sophisticated humanoid attacks that mimic natural behavioral patterns 
[1]. Traditional fraud detection approaches developed for desktop web environments fail to account for IAB-specific 
characteristics including limited visibility into rendering contexts, constrained access to browser APIs, and 
heterogeneous WebView implementations across Android and iOS ecosystems. Behavioral analysis emerges as a critical 
detection paradigm given the fundamental differences between human interaction patterns and automated fraud 
mechanisms. Genuine users exhibit temporal consistency in click intervals, navigation coherence across session 
sequences, and device-specific interaction characteristics shaped by screen dimensions and input modalitiesError! 
Reference source not found.. 

1.2 Problem Statement and Research Objectives 

This research addresses the technical challenge of detecting fraudulent click patterns within mobile in-app browser 
advertising ecosystems. The scope encompasses three primary fraud categories: click fraud operations generating 
illegitimate clicks through automated scripts or coordinated human networks, traffic hijacking attacks redirecting 
legitimate user sessions to attacker-controlled advertising endpoints, and ad injection schemes inserting unauthorized 
advertisements into application WebView rendering contexts. Each fraud category presents distinct behavioral signatures 
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requiring tailored detection approaches while maintaining unified feature extraction pipelines suitable for production 
deployment. 

The research investigates fundamental questions regarding behavioral feature sufficiency for fraud discrimination. Can 
temporal interaction patterns alone provide adequate separation between genuine and fraudulent behaviors, or must 
detection systems incorporate device fingerprinting and network-level signals? What minimum feature set enables 
reliable classification while respecting privacy boundaries and regulatory constraints governing user data collection? 
Detection systems must process real-time classification decisions within millisecond-level latency budgets while 
maintaining false positive rates below 0.5% to avoid disrupting legitimate advertising revenue streams. 

1.3 Contributions and Paper Organization 

This work presents three substantive contributions advancing mobile advertising fraud detection capabilities. First, we 
establish a multi-dimensional behavioral feature taxonomy specifically designed for IAB environments, incorporating 
47 distinct features spanning temporal interaction sequences, spatial gesture patterns, session navigation behaviors, 
device characteristics, and content loading metrics. Second, we introduce a privacy-aware detection methodology 
balancing classification accuracy with data minimization principles, implementing differential privacy mechanisms in 
feature collection pipelines. Third, we provide empirical validation through analysis of 847,293 advertising sessions 
collected from production IAB environments serving 10.4 million daily active users across 23 geographic markets. 

The paper organization proceeds as follows. Section 2 establishes technical background on mobile advertising 
ecosystems and surveys existing fraud detection methodologies. Section 3 develops the threat model and behavioral 
feature analysis framework. Section 4 details the detection methodology architecture and classification algorithms. 
Section 5 presents experimental evaluation and discusses deployment considerations.  

2. Background and Related Work 

2.1 Mobile Advertising Ecosystem and In-App Browsers 

Mobile advertising delivery through in-app browsers operates within a complex ecosystem involving advertisers seeking 
user acquisition, publishers monetizing application traffic, ad networks mediating transactions, and end users interacting 
with advertising content. The technical infrastructure relies on WebView components—platform-specific browser 
rendering engines embedded within native mobile applications. Android implementations utilize Chromium-based 
WebView while iOS employs WKWebView built on the WebKit rendering engine[2]. 

IAB environments differ fundamentally from standalone mobile browsers through restricted API access and constrained 
execution contexts. JavaScript code executing within WebView instances faces limitations in accessing device sensors 
and storage APIs. Communication between WebView contexts and host applications occurs through JavaScript bridge 
mechanisms enabling bidirectional message passing. These bridges expose specific native functionality while 
maintaining security boundaries preventing unauthorized access to application resources[3]. Cookie and storage policy 
management presents additional complexity, as WebView instances maintain separate cookie jars from system browsers, 
creating inconsistent behavioral patterns that fraud detection systems must accommodate. 

2.2 Taxonomy of Ad Fraud in Mobile Environments 

Click fraud encompasses multiple attack methodologies targeting different stages of the advertising value chain. 
Humanoid attacks employ randomized timing algorithms and variable interaction patterns to evade statistical detection 
thresholds, combining automated scripts with human-generated training data to produce synthetic click patterns 
statistically similar to genuine user behaviors[4]. Click injection attacks exploit Android's broadcast receiver 
mechanisms to generate fraudulent attribution claims by monitoring application installation events and injecting 
synthetic click events immediately preceding installations. 

Impression fraud manipulates ad viewability metrics through technical exploitations of rendering contexts. Ad stacking 
layers multiple advertisement creatives within single rendering containers, generating impression events for non-visible 
content[5]. Pixel stuffing renders advertisements in 1x1 pixel containers technically satisfying impression counting 
criteria while preventing actual user visibility. Attribution fraud targets conversion tracking infrastructure, with install 
hijacking operations monitoring device-level application installation broadcasts to inject fraudulent click claims[6]. 
Traffic hijacking attacks redirect legitimate user sessions to attacker-controlled advertising endpoints through 
compromised network infrastructure or malicious SDK dependencies. 
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2.3 Existing Detection Approaches and Limitations 

Rule-based detection methodologies establish explicit thresholds for behavioral anomalies including click frequency 
limits, IP address clustering, and device fingerprint reuse patterns. These approaches provide interpretable detection 
logic suitable for regulatory compliance contexts, though rigid threshold definitions create opportunities for adaptive 
fraud operations to tune attack parameters below detection limits[7]. Machine learning approaches leverage supervised 
classification algorithms trained on labeled datasets of genuine and fraudulent interactions. Random forests, gradient 
boosting machines, and deep neural networks achieve superior detection performance by learning complex non-linear 
decision boundaries from high-dimensional feature spaces[8]. 

IAB-specific limitations constrain detection approach applicability. Visibility constraints prevent access to complete 
rendering contexts, making pixel-level fraud detection techniques inapplicable to WebView contexts where JavaScript 
execution faces API restrictions. Privacy requirements limit behavioral data collection to aggregated signals or locally-
processed features. Cross-platform heterogeneity across Android and iOS WebView implementations requires platform-
agnostic feature definitions robust to rendering engine differences. The research gap motivating this work centers on 
behavioral feature extraction methodologies specifically architected for IAB threat landscapes, addressing WebView-
specific characteristics including JavaScript bridge exploitation risks and rendering context limitations. 

3. Threat Model and Feature Analysis 

3.1 Threat Model and Attack Scenarios 

The adversary model encompasses three distinct threat actor categories operating within mobile in-app browser 
advertising ecosystems. Automated Script Operators deploy programmatic click generation tools executing JavaScript 
code within WebView contexts or interacting with applications through accessibility services. These actors possess 
capabilities to reverse engineer advertising SDK implementations, identify tracking endpoints, and synthesize HTTP 
requests mimicking legitimate click events[9]. Coordinated Fraud Networks organize human operators performing 
manual clicks according to coordination protocols designed to evade behavioral detection systems, exploiting geographic 
distribution to generate diverse IP addresses and device characteristics. SDK-Level Attackers embed malicious code 
within advertising SDK libraries, enabling fraud execution within trusted application contexts through JavaScript bridge 
injection and event listener manipulation[10]. 

Adversary goals align around generating billable advertising events without corresponding genuine user engagement or 
conversion value. Detection visibility assumptions establish the data available for fraud classification: timestamped 
interaction events including click coordinates and scroll gestures, device fingerprint data encompassing screen 
dimensions and user agent strings, network-level signals including request timing and connection characteristics, and 
JavaScript execution metrics capturing page loading patterns. Privacy and regulatory constraints limit direct collection 
of personally identifiable information, requiring detection systems to operate within differential privacy budgets while 
enabling GDPR and CCPA compliance across diverse jurisdictions. 

Table 1 characterizes the three primary fraud operation types according to technical implementation characteristics, 
behavioral signatures, detection challenges, and economic impact metrics. 

Table 1: Fraud Operation Characterization Matrix 

Fraud Type 
Implementation 
Method 

Behavioral Signature Detection Challenges 
Economic 
Impact 

Automated 
Scripts 

JavaScript injection, 
UI automation 

Uniform timing intervals 
(σ<50ms), identical gesture 
trajectories, deterministic 
navigation sequences 

Humanoid attacks 
randomize timing, API 
restrictions limit visibility 

$2.1B annual 
(25% of total 
fraud) 

Coordinated 
Networks 

Manual clicks via 
distributed operators 

Geographic diversity, variable 
timing (σ>200ms), natural 
gesture variation 

Individual behaviors appear 
legitimate, coordination 
signals emerge only in 
aggregate 

$3.8B annual 
(45% of total 
fraud) 
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SDK 
Injection 

Malicious SDK 
embedding, bridge 
exploitation 

Native context execution, 
privileged API access, event 
manipulation 

Trusted execution position 
bypasses external 
monitoring, code 
obfuscation impedes 
analysis 

$1.7B annual 
(20% of total 
fraud) 

Traffic 
Hijacking 

MitM attacks, DNS 
poisoning 

Session redirection patterns, 
endpoint substitution, latency 
anomalies 

Encryption prevents deep 
packet inspection, legitimate 
traffic mimicry 

$0.8B annual 
(10% of total 
fraud) 

3.2 Behavioral Feature Extraction 

User interaction feature extraction focuses on fine-grained temporal and spatial characteristics of individual engagement 
events. Click timing analysis measures intervals between consecutive click events within single advertising sessions, 
producing distributions that differ substantially between human and automated behaviors. Genuine users demonstrate 
variable inter-click intervals following log-normal distributions with median values ranging from 1,200ms to 4,800ms 
depending on creative complexity. Automated scripts exhibit timing patterns with standard deviations below 100ms even 
when employing randomization techniques. 

The click timing feature vector T captures multiple statistical properties: 

𝑇 = {μinterval, σinterval, skewinterval, min
interval

, max
interval

, 𝐶𝑉interval} 

where μ represents mean inter-click time, σ denotes standard deviation, skew measures distribution asymmetry, and CV 
indicates the coefficient of variation. Minimum interval values below 200ms occur in fewer than 2.3% of genuine 
sessions but appear in 78.4% of automated fraud samples. 

Scroll and swipe trajectory analysis examines geometric properties of gesture inputs recorded during advertising session 
interactions. Genuine user gestures exhibit smooth velocity profiles following power law acceleration-deceleration 
patterns shaped by biomechanical constraints. The spatial feature set S encompasses: 

S = {path_length, curvature_mean, velocity_variance, acceleration_max, jerk_coefficient, angle_distribution} 

Curvature mean values below 0.02 radians/pixel indicate suspiciously linear trajectories inconsistent with natural hand 
movements. Velocity variance greater than 850 pixels²/s² correlates with legitimate organic traffic. 

Session-level behavioral patterns emerge from analyzing sequences of user actions across multiple advertising 
impressions. Navigation sequence entropy measures the unpredictability of user navigation paths through application 
screens and advertising content, applying Shannon's formula: 

𝐻 = −∑𝑝(𝑥𝑖)

𝑛

𝑖=1

log2 𝑝 (𝑥𝑖) 

Genuine users generate entropy values ranging from 2.4 to 4.7 bits reflecting diverse navigation behaviors. Automated 
scripts produce entropy below 1.8 bits due to repetitive navigation sequences optimized for fraud efficiency[11]. 

Table 2 presents statistical distributions of key behavioral features across genuine user sessions and fraudulent operation 
categories based on analysis of 847,293 sessions. 

Table 2: Behavioral Feature Statistics Across User Categories 

Feature 
Genuine Users (Mean ± 
SD) 

Automated 
Scripts 

Coordinated 
Networks 

SDK 
Injection 

Inter-click interval (ms) 2,847 ± 1,293 312 ± 47 3,124 ± 1,856 1,847 ± 623 

Gesture path length (px) 387 ± 156 892 ± 89 341 ± 178 523 ± 201 

Velocity variance px²/s² 1,124 ± 447 287 ± 56 1,056 ± 512 734 ± 298 
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Dwell time (ms) 1,923 ± 1,067 87 ± 23 2,234 ± 1,345 1,456 ± 589 

Navigation entropy (bits) 3.42 ± 0.87 1.23 ± 0.34 3.18 ± 0.93 2.67 ± 0.71 

Temporal consistency 
ratio 

1.18 ± 0.23 2.67 ± 0.89 1.34 ± 0.41 1.89 ± 0.53 

3.3 Multi-dimensional Feature Integration 

Device fingerprint features provide complementary signals distinguishing fraudulent operations from genuine user 
populations. Screen dimension analysis identifies automated fraud operations executing on emulator environments where 
screen resolutions differ from physical mobile devices. Genuine mobile traffic concentrates at standard smartphone 
resolutions (1080x1920, 1440x2560, 1170x2532), while fraudulent operations exhibit unusual dimensions indicative of 
emulated environments. User agent string parsing extracts browser version, operating system details, and device model 
information, with anomaly detection identifying inconsistent combinations suggesting user agent spoofing[12]. 

Network fingerprint characteristics examine connection properties and request timing patterns. Round-trip time (RTT) 
measurements to advertising endpoints follow geographic patterns for genuine users, with RTT distributions matching 
expected latency from reported IP locations. Connection reuse patterns differ between automated fraud and genuine 
users, quantified through the connection reuse ratio: 

𝑅conn =
𝑁requests

𝑁connections
 

Genuine mobile traffic demonstrates R_conn > 4.2, while automated operations exhibit R_conn < 2.1. 

Content loading pattern analysis measures the sequence and timing of resource requests during page rendering. Genuine 
browser engines request resources in predictable orders determined by HTML parsing and dependency resolution 
algorithms. The resource request timing vector L captures load ordering characteristics: 

𝐿 = {𝑡html, 𝑡css, 𝑡js_main, 𝑡js_deps, 𝑡images, Δ𝑡sequential} 

Genuine traffic exhibits Δt values ranging from 15ms to 120ms reflecting browser parsing latency, while fraudulent 
operations show either near-simultaneous requests (Δt < 5ms) or excessive delays (Δt > 500ms) incompatible with 
standard browser behavior. 

Cross-signal correlation analysis identifies relationships between behavioral features strengthening fraud discrimination. 
Click timing variance correlates negatively with gesture smoothness in genuine users (ρ = -0.67), while automated 
operations lack this correlation (ρ = -0.12) because timing and gesture generation operate through independent 
randomization processes. Feature importance ranking employs mutual information analysis: 

𝐼(𝐹; 𝐶) = ∑∑𝑝(𝑓, 𝑐)

𝑐∈𝐶

log2 (
𝑝(𝑓, 𝑐)

𝑝(𝑓)𝑝(𝑐)
)

𝑓∈𝐹

 

Features with I > 0.4 bits provide substantial classification information and receive priority in detection pipelines. 
Privacy-preserving feature selection applies differential privacy to mutual information calculations, adding calibrated 
noise to prevent individual user re-identification[13]. 

Table 3 presents feature importance rankings and privacy budget consumption across the multi-dimensional feature set. 

Table 3: Feature Importance and Privacy Budget Analysis 

Feature 
Category 

Top Features 
Mutual 
Information (bits) 

Privacy 
Budget (ε) 

Collection 
Method 

Temporal Patterns 
Inter-click interval variance, Dwell 
time distribution 

0.87, 0.73 0.12, 0.08 
Local 
aggregation 
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Spatial 
Characteristics 

Gesture curvature, Velocity profile 0.69, 0.61 0.15, 0.11 
On-device 
processing 

Session Behavior Navigation entropy, Consistency ratio 0.58, 0.54 0.09, 0.07 
Differential 
privacy 

Device 
Fingerprint 

Screen dimensions, User agent 
validity 

0.47, 0.42 0.04, 0.03 Public attributes 

Network Signals 
Connection reuse ratio, RTT 
distribution 

0.39, 0.34 0.06, 0.05 Server-side logs 

4. Detection Methodology 

4.1 Overall Detection Framework 

The detection architecture implements a multi-stage pipeline processing behavioral signals from raw interaction events 
through final fraud classification. Stage 1 performs real-time feature extraction within client-side WebView contexts, 
collecting interaction timing, gesture characteristics, and session navigation patterns through JavaScript instrumentation. 
Privacy-preserving transformations apply local differential privacy mechanisms before transmitting features to server-
side detection components. Stage 2 aggregates features across temporal windows, computing session-level statistics and 
cross-signal correlations. Stage 3 executes classification algorithms producing fraud probability scores and binary 
classification decisions. 

Client-side processing occurs within WebView JavaScript contexts where event listeners capture user interactions at 
millisecond granularity. The instrumentation code operates within a 15KB JavaScript bundle loaded during WebView 
initialization, minimizing impact on page load performance. Privacy transformations apply quantization to coordinate 
data (10-pixel bins), temporal rounding (50ms intervals), and Laplace noise injection (ε = 0.8) before network 
transmission. Server-side aggregation combines features from individual interaction events into session-level 
representations suitable for classification algorithms, spanning 60-second intervals while maintaining detection latency 
below 2 seconds. 

The classification pipeline accepts session feature vectors containing 47 dimensions spanning all feature categories. 
Preprocessing normalizes features to zero mean and unit variance. The pipeline maintains separate classification paths 
for real-time detection (latency < 500ms) using lightweight models including logistic regression and shallow decision 
trees, and batch analysis (latency < 5 seconds) employing ensemble methods combining gradient boosting machines, 
random forests, and neural network classifiers to maximize detection accuracy. 

Figure 1: Multi-Stage Detection Architecture 
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This figure illustrates the end-to-end detection pipeline across four horizontal swim lanes representing client-side 
processing, network transmission, server-side feature processing, and classification layers. The client swim lane shows 
WebView JavaScript instrumentation capturing touch events, navigation actions, and loading metrics with millisecond-
level timestamps. Privacy transformation blocks apply differential privacy mechanisms including coordinate 
quantization (10px bins), temporal rounding (50ms intervals), and Laplace noise addition (ε=0.8) before network egress. 

The network layer depicts encrypted HTTPS transmission of privacy-preserved feature vectors from client to server 
infrastructure. The server processing swim lane contains two parallel paths: a real-time stream processing pipeline with 
500ms latency SLA and a batch processing pipeline operating on 60-second windows. The real-time path shows 
lightweight feature extraction feeding into a logistic regression classifier outputting binary fraud decisions. The batch 
path demonstrates complex feature engineering including cross-signal correlation computation, temporal consistency 
analysis, and multi-window behavioral drift detection feeding into ensemble classifiers. 

The classification layer illustrates the ensemble voting mechanism combining predictions from three model families: 
gradient boosting machines (XGBoost with 200 trees, max depth 8), random forests (500 trees, Gini impurity), and fully-
connected neural networks (3 hidden layers: 128-64-32 units, ReLU activation). Color-coded confidence scores flow 
from individual classifiers into a weighted voting aggregator producing final fraud probability scores and threshold-
based binary classifications. The figure includes detailed timing annotations showing 847ms average client-side 
processing, 89ms network transmission, 312ms server-side aggregation, and 156ms classification inference for the 
complete pipeline. 

4.2 Behavioral Sequence Modeling 

Temporal modeling of user interactions treats behavioral patterns as sequential data where interaction order and timing 
relationships encode fraud-relevant signals. The sequence representation structures each user session as an ordered list: 

𝑋 = {(𝑥1, 𝑡1), (𝑥2, 𝑡2),… , (𝑥𝑛, 𝑡𝑛)} 

where xᵢ represents feature vectors describing individual interactions and tᵢ denotes timestamps. Variable-length 
sequences pose challenges as sessions contain between 1 and 147 interactions depending on user engagement duration. 
Padding strategies extend short sequences to fixed length L=50 through zero-padding, while truncation limits long 
sequences to the most recent L interactions preserving end-session behaviors most relevant to classification decisions. 

Sequence aggregation applies statistical summarization to produce fixed-length feature vectors independent of original 
sequence length, computing summary statistics (mean, variance, min, max, median, 25th/75th percentiles) across 
temporal dimensions. Attention mechanisms identify key interaction events carrying disproportionate fraud-detection 
information within longer sequences, computing importance weights: 

α𝑖 =
exp(score(𝑥𝑖))

∑𝑗 exp (score(𝑥𝑗))
 

Fraudulent sessions often contain isolated anomalous events surrounded by otherwise normal behaviors. Attention 
mechanisms focus classification on these anomalous events rather than averaging them out through uniform aggregation. 

Distinguishing genuine users from automated scripts leverages subtle behavioral characteristics emerging from human 
motor control and cognitive processing constraints. Human click timing exhibits specific statistical properties shaped by 
reaction time distributions, following a log-normal form: 

𝑝(Δ𝑡) =
1

Δ𝑡σ√2π
exp(−

(ln(Δ𝑡) − μ)2

2σ2 ) 

with parameters μ ≈ 7.8 and σ ≈ 0.6 derived from empirical data. Gesture trajectory analysis reveals biomechanical 
signatures absent from synthetic gestures, with human finger movements following minimum-jerk trajectories producing 
smooth velocity profiles: 

𝑣(𝑡) = 𝑣𝑚𝑎𝑥 sin2 (
π𝑡

𝑇
) 

tomated gesture generators using linear interpolation produce velocity profiles violating minimum-jerk principles. 
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Table 4 compares sequence modeling approaches across detection accuracy, computational requirements, and privacy 
characteristics. 

Table 4: Sequence Modeling Approach Comparison 

Approach 
Detection 
Accuracy (F1) 

Inference 
Time (ms) 

Memory 
Footprint (MB) 

Privacy Properties 

Statistical Aggregation 0.847 12 1.2 Full differential privacy support 

Fixed-Length Padding 0.891 34 4.7 Sequence length exposure risk 

Attention Mechanisms 0.923 89 12.3 
Attention weights reveal 
interaction importance 

Recurrent Networks 0.937 156 31.4 
Full sequence transmission 
required 

Hybrid (Attention + 
Aggregation) 

0.931 67 8.9 
Privacy-preserving with accuracy 
retention 

4.3 Classification and Anomaly Detection 

Ensemble methods combine predictions from multiple classification algorithms to achieve robust detection resistant to 
individual model weaknesses and adversarial evasion attempts. The ensemble architecture incorporates three model 
families with complementary strengths. Gradient boosting machines (XGBoost implementation) excel at learning 
complex non-linear decision boundaries through sequential tree construction. Random forests provide robustness 
through bootstrap aggregation and reduce overfitting risk. Neural network classifiers capture deep feature interactions 
through multi-layer representations. 

The gradient boosting component employs 200 decision trees with maximum depth 8, learning rate 0.05, and L2 
regularization λ = 1.0, optimizing binary cross-entropy loss: 

𝐿 = −∑[𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦𝑖) log(1 − 𝑝𝑖)]

𝑛

𝑖=1

 

Random forest implementation grows 500 trees using Gini impurity splitting criteria: 

𝐺𝑖𝑛𝑖(𝑆) = 1 − ∑(
𝑛𝑖

𝑁
)
2

𝐶

𝑖=1

 

Neural network architecture consists of three hidden layers with dimensions 128, 64, and 32 units employing ReLU 
activation functions, with dropout regularization (p=0.3) preventing overfitting. Ensemble aggregation combines 
individual model predictions through weighted voting: 

𝑝ensemble =
∑ 𝑤𝑖𝑝𝑖

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

 

assigning weight w_i = AUC_i² to model i based on validation AUC scores. 

Handling class imbalance addresses the reality that fraudulent interactions constitute 3-8% of total traffic in production 
advertising systems. The methodology applies stratified sampling during training maintaining fraud class representation 
at 30% through oversampling fraud examples and undersampling genuine traffic. Synthetic minority oversampling 
(SMOTE) generates artificial fraud examples through interpolation between existing fraud instances in feature space. 
Class weight adjustment in loss functions penalizes misclassification of fraud samples more heavily than genuine traffic 
errors. 
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Threshold optimization determines the classification decision boundary converting continuous fraud probability scores 
into binary predictions, balancing precision and recall according to operational priorities. The precision-recall curve 
characterizes threshold-dependent performance: 

Precision(𝑡) =
𝑇𝑃(𝑡)

𝑇𝑃(𝑡) + 𝐹𝑃(𝑡)
 

Recall(𝑡) =
𝑇𝑃(𝑡)

𝑇𝑃(𝑡) + 𝐹𝑁(𝑡)
 

Operational deployment employs multiple threshold tiers implementing graduated response actions. Threshold t₁ = 0.92 
triggers immediate blocking for high-confidence fraud applied to 4.7% of traffic. Threshold t₂ = 0.68 initiates additional 
validation including device fingerprint verification affecting 8.3% of traffic. Traffic below t₃ = 0.35 receives normal 
processing without fraud intervention. 

Figure 2: Ensemble Classification Architecture and Decision Boundaries 

 

This figure visualizes the ensemble classification system across three panels. Panel A shows the three parallel 
classification pipelines processing the same input feature vector. The first pipeline depicts XGBoost gradient boosting 
with a tree visualization showing 8-level depth and split conditions based on inter-click interval variance (root split at 
450ms²) and gesture curvature (second-level split at 0.03 rad/px). Tree leaf nodes display fraud probability outputs 
ranging from 0.07 to 0.94. 

The second pipeline illustrates the random forest architecture with 500 decision trees. A representative tree subset (5 
trees) shows diverse splitting strategies using different feature combinations. Trees split on navigation entropy (threshold 
2.1 bits), dwell time variance (threshold 890ms²), and connection reuse ratio (threshold 3.4). Individual tree predictions 
aggregate through majority voting producing ensemble probability. 

The third pipeline presents the neural network architecture with three fully-connected hidden layers. Input layer receives 
47 normalized features with color-coded categories (blue: temporal features, green: spatial features, red: network 
features, orange: device features). Hidden layers show 128, 64, and 32 units with ReLU activation functions and 30% 
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dropout masks (indicated by grayed-out units). Output layer sigmoid activation produces fraud probability score. 
Network weights visualization uses line thickness to indicate connection strength. 

Panel B displays decision boundary visualization in 2D feature space using t-SNE dimensionality reduction of the full 
47-dimensional space. Scatter plot shows 10,000 sample points colored by ground truth labels (blue: genuine, red: fraud). 
Three overlaid contour lines represent decision boundaries from individual models (dashed lines) and final ensemble 
boundary (solid thick line). Ensemble boundary shows smoother, more conservative classification compared to 
individual models, reducing false positive rate in ambiguous regions. 

Panel C presents precision-recall curves for each model and the ensemble. XGBoost curve (green) achieves AUC 0.94, 
random forest (blue) reaches 0.92, neural network (purple) obtains 0.89, and ensemble (red bold) peaks at 0.96. Operating 
points mark three deployment thresholds: t₁=0.92 (precision 0.97, recall 0.84), t₂=0.68 (precision 0.91, recall 0.93), and 
t₃=0.35 (precision 0.78, recall 0.98). Shaded regions indicate confidence intervals from 5-fold cross-validation. 

Figure 3: Multi-Threshold Response System 

 

This figure illustrates the graduated response framework across fraud probability ranges. A horizontal probability axis 
spans 0.0 to 1.0 with three color-coded zones: green (0.0-0.35) for normal processing, yellow (0.35-0.68) for validation 
tier, orange (0.68-0.92) for enhanced scrutiny, and red (0.92-1.0) for immediate blocking. 

Four vertical swim lanes show processing flows for each tier. The green zone (54.2% of traffic) shows direct ad serving 
without fraud intervention. The yellow zone (32.8% of traffic) triggers device fingerprint verification comparing current 
session fingerprint against historical database. Matching historical fingerprints associated with previous genuine sessions 
receive normal processing; new or inconsistent fingerprints escalate to enhanced scrutiny. 

The orange zone (8.3% of traffic) initiates comprehensive behavioral analysis including cross-session pattern matching, 
IP reputation checks, and user agent validation. Traffic passing all validation checks proceeds to ad serving with 
enhanced monitoring. Failed validation escalates to manual review queue. 
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The red zone (4.7% of traffic) executes immediate blocking returning error responses to ad requests. Blocked requests 
generate audit trail entries for post-incident analysis and fraud operation attribution. A feedback loop (indicated by 
curved arrows) updates the classification model based on manual review outcomes from orange zone escalations. 

Statistical annotations display average processing latency for each tier: green zone 89ms (feature extraction + 
classification only), yellow zone 234ms (+145ms fingerprint verification), orange zone 687ms (+453ms comprehensive 
validation), red zone 112ms (+23ms blocking response generation). Daily traffic volume percentages and fraud detection 
rates appear for each tier, showing 96.7% of detected fraud concentrated in orange and red zones while maintaining 0.4% 
false positive rate across all legitimate traffic. 

5. Evaluation and Discussion 

5.1 Experimental Setup and Datasets 

Dataset construction leverages production advertising traffic from mobile in-app browser environments serving 10.4 
million daily active users across 23 geographic markets. The collection period spans 89 days from September 2024 
through November 2024, capturing 847,293 complete advertising sessions containing sufficient interaction events for 
behavioral analysis. Each session includes timestamped interaction logs, device characteristics, network properties, and 
advertiser outcome data indicating whether subsequent user actions followed advertising exposure. 

Ground truth labeling combines multiple methodologies addressing the challenge of definitively identifying fraudulent 
sessions in large-scale production environments. Automated labeling applies rule-based heuristics identifying obvious 
fraud patterns including impossible interaction timing (inter-click intervals < 50ms), inhuman gesture characteristics 
(linear trajectories with zero curvature), and device fingerprint anomalies. Expert manual review examines a stratified 
random sample of 25,000 sessions, with three independent reviewers labeling each session based on comprehensive 
behavioral pattern analysis, achieving inter-rater agreement measured by Cohen's kappa of 0.87. 

The labeled dataset contains 67,384 fraud sessions (8.0%) spanning diverse fraud operation types: automated scripts 
(43.2%), coordinated networks (38.7%), SDK injection attacks (12.4%), and traffic hijacking (5.7%). The remaining 
779,909 genuine sessions reflect organic user traffic across varied advertising content categories. Evaluation metrics 
capture multiple performance dimensions relevant to production deployment, including precision, recall, F1-score, and 
area under ROC curve (AUC). Baseline methods establish performance benchmarks against state-of-practice fraud 
detection approaches including rule-based detection, logistic regression, and Isolation Forest unsupervised anomaly 
detection. 

5.2 Detection Performance Analysis 

Overall detection accuracy results demonstrate strong performance across all evaluation metrics. The ensemble classifier 
achieves precision 94.7%, recall 91.3%, and F1-score 92.9% on held-out test data comprising 169,459 sessions (20% of 
total dataset). Area under ROC curve reaches 0.967, indicating excellent discrimination capability. These results 
substantially exceed baseline method performance: rule-based detection achieves only 67.4% precision and 52.8% recall, 
logistic regression reaches 86.2% precision and 79.7% recall, while Isolation Forest obtains 73.5% precision and 68.9% 
recall. 

Performance analysis across different fraud types reveals variation in detection difficulty. Automated script detection 
achieves the highest accuracy with precision 97.3% and recall 94.8%, attributable to distinctive timing and gesture 
characteristics. Coordinated network detection proves more challenging, reaching precision 91.4% and recall 86.7%, as 
manual fraud operations generate behavioral patterns closer to genuine users. SDK injection attacks exhibit intermediate 
detection difficulty with precision 93.8% and recall 89.2%. Traffic hijacking represents the most challenging category 
at precision 88.6% and recall 82.4%. 

Feature importance analysis through ablation studies quantifies individual feature category contributions. Removing 
temporal interaction features decreases F1-score by 8.7 percentage points, confirming these features provide the strongest 
fraud discrimination signal. Eliminating spatial gesture characteristics reduces F1 by 6.4 points, while removing session-
level behavioral patterns decreases performance by 5.2 points. Device fingerprint features contribute 3.8 points, and 
network signals add 2.9 points. Multi-dimensional feature integration impact emerges through comparison against 
single-category classifiers: temporal features alone achieve F1-score 84.2%, spatial features reach 78.6%, session 
patterns obtain 76.3%, device fingerprints achieve 71.8%, and network signals reach 69.4%. The full multi-dimensional 
classifier at 92.9% F1 substantially exceeds any single category, validating the integration approach. 
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Table 5 presents comprehensive performance metrics across fraud operation types and detection methodologies. 

Table 5: Detection Performance by Fraud Type and Method 

Method 
Automated 
Scripts 

Coordinated 
Networks 

SDK Injection 
Traffic 
Hijacking 

Overall 

Ensemble 
(Proposed) 

P: 97.3% / R: 
94.8% 

P: 91.4% / R: 
86.7% 

P: 93.8% / R: 
89.2% 

P: 88.6% / R: 
82.4% 

P: 94.7% / R: 
91.3% 

Rule-Based 
Baseline 

P: 78.2% / R: 
63.4% 

P: 54.7% / R: 
41.2% 

P: 69.3% / R: 
58.7% 

P: 51.8% / R: 
38.9% 

P: 67.4% / R: 
52.8% 

Logistic 
Regression 

P: 92.1% / R: 
88.3% 

P: 79.8% / R: 
72.4% 

P: 84.6% / R: 
76.8% 

P: 76.3% / R: 
68.2% 

P: 86.2% / R: 
79.7% 

Isolation Forest 
P: 81.4% / R: 
76.2% 

P: 64.8% / R: 
59.3% 

P: 72.7% / R: 
65.8% 

P: 63.2% / R: 
56.7% 

P: 73.5% / R: 
68.9% 

Random Forest 
Only 

P: 94.8% / R: 
91.2% 

P: 87.3% / R: 
82.6% 

P: 90.4% / R: 
85.3% 

P: 84.7% / R: 
78.9% 

P: 91.6% / R: 
87.8% 

5.3 Limitations, Privacy Implications, and Future Directions 

Potential evasion strategies exist that sophisticated adversaries might employ to bypass the detection methodology. 
Adversarial machine learning techniques could generate fraudulent interactions specifically optimized to evade 
classification boundaries learned during training. Attackers with access to classification model parameters could craft 
fraud operations producing feature values in regions of feature space associated with genuine traffic. The ensemble 
approach provides partial robustness against such attacks through model diversity, though future work should investigate 
adversarial training techniques where the classifier trains on synthetically generated adversarial examples. 

Privacy-utility trade-offs emerge from tension between comprehensive behavioral data collection enabling accurate 
fraud detection and data minimization principles protecting user privacy. The current methodology maintains detection 
performance across privacy budget ranges ε=0.5 to ε=2.0, demonstrating feasibility of privacy-preserving fraud 
detection. More restrictive privacy constraints (ε < 0.5) begin degrading performance, with F1-score declining to 87.3% 
at ε=0.3. Organizations must balance fraud prevention requirements against regulatory compliance obligations and user 
privacy expectations across different jurisdictions. 

Scalability considerations for production deployment address computational resource requirements for processing 
billions of daily advertising sessions. The current implementation achieves throughput of 12,400 classifications per 
second on commodity server hardware (Intel Xeon E5-2680, 128GB RAM), sufficient for mid-scale advertising 
platforms but requiring horizontal scaling for larger deployments. Feature extraction parallelizes effectively across server 
clusters, as individual sessions process independently. Model serving optimization through TensorFlow Lite quantization 
reduces neural network inference latency by 47% while maintaining accuracy within 0.3 percentage points. 

Directions for future research include investigation of few-shot learning approaches addressing the challenge of detecting 
novel fraud operation types with limited labeled examples. Transfer learning across advertising platforms could improve 
detection on smaller platforms lacking extensive fraud training data by transferring knowledge from larger platforms. 
Federated learning architectures could enable collaborative fraud detection across competing advertising platforms while 
preserving competitive business intelligence through privacy-preserving model aggregation techniques. 
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