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mobile advertising fraud, Mobile in-app browsers have become primary channels for digital advertising,
in-app browser security, processing billions of daily ad impressions. This infrastructure faces escalating
behavioral biometrics, threats from sophisticated click fraud operations that exploit behavioral blind
click pattern analysis spots unique to WebView environments. We present a comprehensive analysis

of fraudulent click patterns through multi-dimensional behavioral feature
extraction spanning user interaction sequences, device fingerprints, and
network-level signals. Our approach characterizes the distinct temporal,
spatial, and contextual attributes that differentiate automated fraud from
genuine user engagement across 847,293 advertising sessions. The detection
framework achieves 94.7% precision and 91.3% recall in identifying
coordinated click fraud, traffic hijacking, and ad injection attacks while
maintaining privacy-preserving data collection boundaries. Experimental
validation demonstrates robustness against evolving evasion techniques and
scalability for real-time deployment in production advertising systems serving
over 10 million daily active users.

1. Introduction

1.1 Background and Motivation

The mobile advertising ecosystem has evolved into a multi-billion dollar infrastructure where in-app browsers (IABs)
mediate over 63% of mobile web traffic originating from application contexts. Recent industry reports estimate annual
losses exceeding $84 billion from advertising fraud globally, with mobile platforms accounting for approximately 47%
of this financial impactError! Reference source not found. The architectural complexity of IAB environments
introduces unique attack surfaces absent from traditional web browsers. WebView components embedded within mobile
applications establish bidirectional communication channels through JavaScript bridge mechanisms, creating
opportunities for malicious actors to manipulate ad delivery pathways and inject fraudulent interaction patterns.

Advertising platforms processing over 2.3 billion daily bid requests must distinguish genuine user engagement from
automated scripts, coordinated bot networks, and sophisticated humanoid attacks that mimic natural behavioral patterns
[1]. Traditional fraud detection approaches developed for desktop web environments fail to account for IAB-specific
characteristics including limited visibility into rendering contexts, constrained access to browser APIs, and
heterogeneous WebView implementations across Android and i0OS ecosystems. Behavioral analysis emerges as a critical
detection paradigm given the fundamental differences between human interaction patterns and automated fraud
mechanisms. Genuine users exhibit temporal consistency in click intervals, navigation coherence across session
sequences, and device-specific interaction characteristics shaped by screen dimensions and input modalitiesError!
Reference source not found..

1.2 Problem Statement and Research Objectives

This research addresses the technical challenge of detecting fraudulent click patterns within mobile in-app browser
advertising ecosystems. The scope encompasses three primary fraud categories: click fraud operations generating
illegitimate clicks through automated scripts or coordinated human networks, traffic hijacking attacks redirecting
legitimate user sessions to attacker-controlled advertising endpoints, and ad injection schemes inserting unauthorized
advertisements into application WebView rendering contexts. Each fraud category presents distinct behavioral signatures
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requiring tailored detection approaches while maintaining unified feature extraction pipelines suitable for production
deployment.

The research investigates fundamental questions regarding behavioral feature sufficiency for fraud discrimination. Can
temporal interaction patterns alone provide adequate separation between genuine and fraudulent behaviors, or must
detection systems incorporate device fingerprinting and network-level signals? What minimum feature set enables
reliable classification while respecting privacy boundaries and regulatory constraints governing user data collection?
Detection systems must process real-time classification decisions within millisecond-level latency budgets while
maintaining false positive rates below 0.5% to avoid disrupting legitimate advertising revenue streams.

1.3 Contributions and Paper Organization

This work presents three substantive contributions advancing mobile advertising fraud detection capabilities. First, we
establish a multi-dimensional behavioral feature taxonomy specifically designed for IAB environments, incorporating
47 distinct features spanning temporal interaction sequences, spatial gesture patterns, session navigation behaviors,
device characteristics, and content loading metrics. Second, we introduce a privacy-aware detection methodology
balancing classification accuracy with data minimization principles, implementing differential privacy mechanisms in
feature collection pipelines. Third, we provide empirical validation through analysis of 847,293 advertising sessions
collected from production IAB environments serving 10.4 million daily active users across 23 geographic markets.

The paper organization proceeds as follows. Section 2 establishes technical background on mobile advertising
ecosystems and surveys existing fraud detection methodologies. Section 3 develops the threat model and behavioral
feature analysis framework. Section 4 details the detection methodology architecture and classification algorithms.
Section 5 presents experimental evaluation and discusses deployment considerations.

2. Background and Related Work

2.1 Mobile Advertising Ecosystem and In-App Browsers

Mobile advertising delivery through in-app browsers operates within a complex ecosystem involving advertisers seeking
user acquisition, publishers monetizing application traffic, ad networks mediating transactions, and end users interacting
with advertising content. The technical infrastructure relies on WebView components—platform-specific browser
rendering engines embedded within native mobile applications. Android implementations utilize Chromium-based
WebView while i0S employs WKWebView built on the WebKit rendering engine[2].

IAB environments differ fundamentally from standalone mobile browsers through restricted API access and constrained
execution contexts. JavaScript code executing within WebView instances faces limitations in accessing device sensors
and storage APIs. Communication between WebView contexts and host applications occurs through JavaScript bridge
mechanisms enabling bidirectional message passing. These bridges expose specific native functionality while
maintaining security boundaries preventing unauthorized access to application resources[3]. Cookie and storage policy
management presents additional complexity, as WebView instances maintain separate cookie jars from system browsers,
creating inconsistent behavioral patterns that fraud detection systems must accommodate.

2.2 Taxonomy of Ad Fraud in Mobile Environments

Click fraud encompasses multiple attack methodologies targeting different stages of the advertising value chain.
Humanoid attacks employ randomized timing algorithms and variable interaction patterns to evade statistical detection
thresholds, combining automated scripts with human-generated training data to produce synthetic click patterns
statistically similar to genuine user behaviors[4]. Click injection attacks exploit Android's broadcast receiver
mechanisms to generate fraudulent attribution claims by monitoring application installation events and injecting
synthetic click events immediately preceding installations.

Impression fraud manipulates ad viewability metrics through technical exploitations of rendering contexts. Ad stacking
layers multiple advertisement creatives within single rendering containers, generating impression events for non-visible
content[5]. Pixel stuffing renders advertisements in 1x1 pixel containers technically satisfying impression counting
criteria while preventing actual user visibility. Attribution fraud targets conversion tracking infrastructure, with install
hijacking operations monitoring device-level application installation broadcasts to inject fraudulent click claims[6].
Traffic hijacking attacks redirect legitimate user sessions to attacker-controlled advertising endpoints through
compromised network infrastructure or malicious SDK dependencies.
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2.3 Existing Detection Approaches and Limitations

Rule-based detection methodologies establish explicit thresholds for behavioral anomalies including click frequency
limits, IP address clustering, and device fingerprint reuse patterns. These approaches provide interpretable detection
logic suitable for regulatory compliance contexts, though rigid threshold definitions create opportunities for adaptive
fraud operations to tune attack parameters below detection limits[7]. Machine learning approaches leverage supervised
classification algorithms trained on labeled datasets of genuine and fraudulent interactions. Random forests, gradient
boosting machines, and deep neural networks achieve superior detection performance by learning complex non-linear
decision boundaries from high-dimensional feature spaces[8].

[IAB-specific limitations constrain detection approach applicability. Visibility constraints prevent access to complete
rendering contexts, making pixel-level fraud detection techniques inapplicable to WebView contexts where JavaScript
execution faces API restrictions. Privacy requirements limit behavioral data collection to aggregated signals or locally-
processed features. Cross-platform heterogeneity across Android and i0OS WebView implementations requires platform-
agnostic feature definitions robust to rendering engine differences. The research gap motivating this work centers on
behavioral feature extraction methodologies specifically architected for IAB threat landscapes, addressing WebView-
specific characteristics including JavaScript bridge exploitation risks and rendering context limitations.

3. Threat Model and Feature Analysis

3.1 Threat Model and Attack Scenarios

The adversary model encompasses three distinct threat actor categories operating within mobile in-app browser
advertising ecosystems. Automated Script Operators deploy programmatic click generation tools executing JavaScript
code within WebView contexts or interacting with applications through accessibility services. These actors possess
capabilities to reverse engineer advertising SDK implementations, identify tracking endpoints, and synthesize HTTP
requests mimicking legitimate click events[9]. Coordinated Fraud Networks organize human operators performing
manual clicks according to coordination protocols designed to evade behavioral detection systems, exploiting geographic
distribution to generate diverse IP addresses and device characteristics. SDK-Level Attackers embed malicious code
within advertising SDK libraries, enabling fraud execution within trusted application contexts through JavaScript bridge
injection and event listener manipulation[10].

Adversary goals align around generating billable advertising events without corresponding genuine user engagement or
conversion value. Detection visibility assumptions establish the data available for fraud classification: timestamped
interaction events including click coordinates and scroll gestures, device fingerprint data encompassing screen
dimensions and user agent strings, network-level signals including request timing and connection characteristics, and
JavaScript execution metrics capturing page loading patterns. Privacy and regulatory constraints limit direct collection
of personally identifiable information, requiring detection systems to operate within differential privacy budgets while
enabling GDPR and CCPA compliance across diverse jurisdictions.

Table 1 characterizes the three primary fraud operation types according to technical implementation characteristics,
behavioral signatures, detection challenges, and economic impact metrics.

Table 1: Fraud Operation Characterization Matrix

Implementation . . . Economic
Fraud Type Method Behavioral Signature Detection Challenges Impact
Uniform  timing _intervals Humanoid attacks $2.1B annual

Automated JavaScript injection, (o<50ms), identical gesture
Scripts UI automation trajectories, deterministic
navigation sequences

randomize timing, API (25% of total
restrictions limit visibility fraud)

Geographic diversity, variable Individual behaviors appear $3.8B annual

Coordinated ~ Manual clicks via timing (c>200ms), natural legitimate, coordination (45% of total
Networks distributed operators - signals emerge only in
gesture variation aggregate fraud)
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Trusted execution position

SDK Malicious SDK  Native context execution, bypasses external $1.7B annual
Injection embedding, bridge privileged API access, event monitoring, code (20% of total
exploitation manipulation obfuscation impedes fraud)
analysis
. Session redirection patterns, Encryption prevents deep $0.8B annual
Igri?fﬁlgin MlitMni?ftaCks’ DNS endpoint substitution, latency packet inspection, legitimate (10% of total
jacking posoning anomalies traffic mimicry fraud)

3.2 Behavioral Feature Extraction

User interaction feature extraction focuses on fine-grained temporal and spatial characteristics of individual engagement
events. Click timing analysis measures intervals between consecutive click events within single advertising sessions,
producing distributions that differ substantially between human and automated behaviors. Genuine users demonstrate
variable inter-click intervals following log-normal distributions with median values ranging from 1,200ms to 4,800ms
depending on creative complexity. Automated scripts exhibit timing patterns with standard deviations below 100ms even
when employing randomization techniques.

The click timing feature vector T captures multiple statistical properties:

T = {uintervab Ojntervals Ske‘/vinterval' . min », Max ’ CVinterval}
interval interval

where p represents mean inter-click time, ¢ denotes standard deviation, skew measures distribution asymmetry, and CV
indicates the coefficient of variation. Minimum interval values below 200ms occur in fewer than 2.3% of genuine
sessions but appear in 78.4% of automated fraud samples.

Scroll and swipe trajectory analysis examines geometric properties of gesture inputs recorded during advertising session
interactions. Genuine user gestures exhibit smooth velocity profiles following power law acceleration-deceleration
patterns shaped by biomechanical constraints. The spatial feature set S encompasses:

S = {path_length, curvature mean, velocity variance, acceleration_max, jerk coefficient, angle distribution}

Curvature mean values below 0.02 radians/pixel indicate suspiciously linear trajectories inconsistent with natural hand
movements. Velocity variance greater than 850 pixels?/s? correlates with legitimate organic traffic.

Session-level behavioral patterns emerge from analyzing sequences of user actions across multiple advertising
impressions. Navigation sequence entropy measures the unpredictability of user navigation paths through application
screens and advertising content, applying Shannon's formula:

H= —;p(xi) log, p (x;)

Genuine users generate entropy values ranging from 2.4 to 4.7 bits reflecting diverse navigation behaviors. Automated
scripts produce entropy below 1.8 bits due to repetitive navigation sequences optimized for fraud efficiency[11].

Table 2 presents statistical distributions of key behavioral features across genuine user sessions and fraudulent operation
categories based on analysis of 847,293 sessions.

Table 2: Behavioral Feature Statistics Across User Categories

Feature Genuine Users (Mean =+ Aut.omated Coordinated SQK )

SD) Scripts Networks Injection
Inter-click interval (ms) 2,847+ 1,293 312 +47 3,124 £ 1,856 1,847 £ 623
Gesture path length (px) 387 £ 156 892 + 89 341+ 178 523 +£201
Velocity variance px?/s> 1,124 + 447 287 + 56 1,056 £ 512 734 + 298
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Dwell time (ms) 1,923 £1,067 87+23 2,234+ 1,345 1,456 + 589

Navigation entropy (bits)  3.42 + 0.87 1.23+£0.34 3.18+0.93 2.67+£0.71
;‘t’?gporal consistency | g, (3 2.67 +0.89 1344041 1.89+0.53

3.3 Multi-dimensional Feature Integration

Device fingerprint features provide complementary signals distinguishing fraudulent operations from genuine user
populations. Screen dimension analysis identifies automated fraud operations executing on emulator environments where
screen resolutions differ from physical mobile devices. Genuine mobile traffic concentrates at standard smartphone
resolutions (1080x1920, 1440x2560, 1170x2532), while fraudulent operations exhibit unusual dimensions indicative of
emulated environments. User agent string parsing extracts browser version, operating system details, and device model
information, with anomaly detection identifying inconsistent combinations suggesting user agent spoofing[12].

Network fingerprint characteristics examine connection properties and request timing patterns. Round-trip time (RTT)
measurements to advertising endpoints follow geographic patterns for genuine users, with RTT distributions matching
expected latency from reported IP locations. Connection reuse patterns differ between automated fraud and genuine
users, quantified through the connection reuse ratio:

R _ Nrequests
conn — N
connections

Genuine mobile traffic demonstrates R_conn > 4.2, while automated operations exhibit R_conn < 2.1.

Content loading pattern analysis measures the sequence and timing of resource requests during page rendering. Genuine
browser engines request resources in predictable orders determined by HTML parsing and dependency resolution
algorithms. The resource request timing vector L captures load ordering characteristics:

L= {thtmli Lesss tjs_main; tjs_depsr timagesr Atsequential}

Genuine traffic exhibits At values ranging from 15ms to 120ms reflecting browser parsing latency, while fraudulent
operations show either near-simultaneous requests (At < 5ms) or excessive delays (At > 500ms) incompatible with
standard browser behavior.

Cross-signal correlation analysis identifies relationships between behavioral features strengthening fraud discrimination.
Click timing variance correlates negatively with gesture smoothness in genuine users (p = -0.67), while automated
operations lack this correlation (p = -0.12) because timing and gesture generation operate through independent
randomization processes. Feature importance ranking employs mutual information analysis:

o p(f,c)
1) = ) > p(f.0)log, (—p( 5 p(c))

fEF ceC

Features with I > 0.4 bits provide substantial classification information and receive priority in detection pipelines.
Privacy-preserving feature selection applies differential privacy to mutual information calculations, adding calibrated
noise to prevent individual user re-identification[13].

Table 3 presents feature importance rankings and privacy budget consumption across the multi-dimensional feature set.

Table 3: Feature Importance and Privacy Budget Analysis

Feature
Category

Mutual Privacy Collection

Top Features Information (bits) Budget (¢) Method

Inter-click interval variance, Dwell 0.87,0.73 0.12, 0.08 Local

Temporal Patterns ;.o distribution aggregation
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Spatial .. Gesture curvature, Velocity profile 0.69, 0.61 0.15,0.11 On—demce
Characteristics processing
Session Behavior  Navigation entropy, Consistency ratio  0.58, 0.54 0.09, 0.07 I])Drlit;fg;ntlal
pevice Screen - dimensions, - User agent 47 47 0.04,003  Public attributes
ingerprint validity
Network Signals ~ Gonnection  reuse  ratio,  RTT 39 () 34 0.06,0.05  Server-side logs
distribution

4. Detection Methodology

4.1 Overall Detection Framework

The detection architecture implements a multi-stage pipeline processing behavioral signals from raw interaction events
through final fraud classification. Stage 1 performs real-time feature extraction within client-side WebView contexts,
collecting interaction timing, gesture characteristics, and session navigation patterns through JavaScript instrumentation.
Privacy-preserving transformations apply local differential privacy mechanisms before transmitting features to server-
side detection components. Stage 2 aggregates features across temporal windows, computing session-level statistics and
cross-signal correlations. Stage 3 executes classification algorithms producing fraud probability scores and binary
classification decisions.

Client-side processing occurs within WebView JavaScript contexts where event listeners capture user interactions at
millisecond granularity. The instrumentation code operates within a 15KB JavaScript bundle loaded during WebView
initialization, minimizing impact on page load performance. Privacy transformations apply quantization to coordinate
data (10-pixel bins), temporal rounding (50ms intervals), and Laplace noise injection (¢ = 0.8) before network
transmission. Server-side aggregation combines features from individual interaction events into session-level
representations suitable for classification algorithms, spanning 60-second intervals while maintaining detection latency
below 2 seconds.

The classification pipeline accepts session feature vectors containing 47 dimensions spanning all feature categories.
Preprocessing normalizes features to zero mean and unit variance. The pipeline maintains separate classification paths
for real-time detection (latency < 500ms) using lightweight models including logistic regression and shallow decision
trees, and batch analysis (latency < 5 seconds) employing ensemble methods combining gradient boosting machines,
random forests, and neural network classifiers to maximize detection accuracy.

Figure 1: Multi-Stage Detection Architecture

Multi-Stage Detection Pipeline

N . WebView JavaScript Privacy Transformation
Client-Side & Avg: 847ms

Processing

Encrypted HTTPS Transmission
Privacy-preserved feature vectors (Avg: 89ms)
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Processing

Random Forest Neural Network
50C Layers: 128-64-32 Weighted Voting
" vpi/ E Wi

Classification
Layer

e: 0.89
Weight: 0.33

Weight: 0.32

Confidence: 0.2 ‘
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This figure illustrates the end-to-end detection pipeline across four horizontal swim lanes representing client-side
processing, network transmission, server-side feature processing, and classification layers. The client swim lane shows
WebView JavaScript instrumentation capturing touch events, navigation actions, and loading metrics with millisecond-
level timestamps. Privacy transformation blocks apply differential privacy mechanisms including coordinate
quantization (10px bins), temporal rounding (50ms intervals), and Laplace noise addition (¢=0.8) before network egress.

The network layer depicts encrypted HTTPS transmission of privacy-preserved feature vectors from client to server
infrastructure. The server processing swim lane contains two parallel paths: a real-time stream processing pipeline with
500ms latency SLA and a batch processing pipeline operating on 60-second windows. The real-time path shows
lightweight feature extraction feeding into a logistic regression classifier outputting binary fraud decisions. The batch
path demonstrates complex feature engineering including cross-signal correlation computation, temporal consistency
analysis, and multi-window behavioral drift detection feeding into ensemble classifiers.

The classification layer illustrates the ensemble voting mechanism combining predictions from three model families:
gradient boosting machines (XGBoost with 200 trees, max depth 8), random forests (500 trees, Gini impurity), and fully-
connected neural networks (3 hidden layers: 128-64-32 units, ReLU activation). Color-coded confidence scores flow
from individual classifiers into a weighted voting aggregator producing final fraud probability scores and threshold-
based binary classifications. The figure includes detailed timing annotations showing 847ms average client-side
processing, 89ms network transmission, 312ms server-side aggregation, and 156ms classification inference for the
complete pipeline.

4.2 Behavioral Sequence Modeling

Temporal modeling of user interactions treats behavioral patterns as sequential data where interaction order and timing
relationships encode fraud-relevant signals. The sequence representation structures each user session as an ordered list:

X = {(x1,t1), (X2, t2), ey (X t1)}

where x; represents feature vectors describing individual interactions and t; denotes timestamps. Variable-length
sequences pose challenges as sessions contain between 1 and 147 interactions depending on user engagement duration.
Padding strategies extend short sequences to fixed length L=50 through zero-padding, while truncation limits long
sequences to the most recent L interactions preserving end-session behaviors most relevant to classification decisions.

Sequence aggregation applies statistical summarization to produce fixed-length feature vectors independent of original
sequence length, computing summary statistics (mean, variance, min, max, median, 25th/75th percentiles) across
temporal dimensions. Attention mechanisms identify key interaction events carrying dlsproportlonate fraud-detection
information within longer sequences, computing importance weights:

exp(score(x;))
Yj €xp (score(xj))

Fraudulent sessions often contain isolated anomalous events surrounded by otherwise normal behaviors. Attention
mechanisms focus classification on these anomalous events rather than averaging them out through uniform aggregation.

i =

Distinguishing genuine users from automated scripts leverages subtle behavioral characteristics emerging from human
motor control and cognitive processing constraints. Human click timing exhibits specific statistical properties shaped by
reaction time distributions, following a log-normal form:

N2
P(A) = (In(At) u))

1
Atov2m P < 202
with parameters p =~ 7.8 and ¢ = 0.6 derived from empirical data. Gesture trajectory analysis reveals biomechanical

signatures absent from synthetic gestures, with human finger movements following minimum-jerk trajectories producing
smooth velocity profiles:

Tt
v(t) = Vpyqy Sin? (7)

tomated gesture generators using linear interpolation produce velocity profiles violating minimum-jerk principles.
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Table 4 compares sequence modeling approaches across detection accuracy, computational requirements, and privacy
characteristics.

Table 4: Sequence Modeling Approach Comparison

Detection Inference Memory . .

Approach Accuracy (F1) Time (ms) Footprint (MB) Privacy Properties

Statistical Aggregation 0.847 12 1.2 Full differential privacy support

Fixed-Length Padding  0.891 34 4.7 Sequence length exposure risk

Attention Mechanisms  0.923 89 12.3 Attention weights reveal
Interaction importance

Recurrent Networks 0.937 156 314 Full  sequence transmission
required

Hybrid (Attention + 0931 67 39 Privacy-preserving with accuracy

Aggregation) retention

4.3 Classification and Anomaly Detection

Ensemble methods combine predictions from multiple classification algorithms to achieve robust detection resistant to
individual model weaknesses and adversarial evasion attempts. The ensemble architecture incorporates three model
families with complementary strengths. Gradient boosting machines (XGBoost implementation) excel at learning
complex non-linear decision boundaries through sequential tree construction. Random forests provide robustness
through bootstrap aggregation and reduce overfitting risk. Neural network classifiers capture deep feature interactions
through multi-layer representations.

The gradient boosting component employs 200 decision trees with maximum depth 8, learning rate 0.05, and L2
regularization A = 1.0, optimizing binary cross-entropy loss:

L=— ) [y;log(p;) + (1 —y;)log(1 —p;)]
=1

Random forest implementation grows 500 trees using Gini impurity splitting criteria:

Cc
Gini(S) =1 — Z (%)2
i=1

Neural network architecture consists of three hidden layers with dimensions 128, 64, and 32 units employing ReLU
activation functions, with dropout regularization (p=0.3) preventing overfitting. Ensemble aggregation combines
individual model predictions through weighted voting:

n
p _ =1 WiDi
ensemble — n
i=1 Wi

assigning weight w_i= AUC i? to model i based on validation AUC scores.

Handling class imbalance addresses the reality that fraudulent interactions constitute 3-8% of total traffic in production
advertising systems. The methodology applies stratified sampling during training maintaining fraud class representation
at 30% through oversampling fraud examples and undersampling genuine traffic. Synthetic minority oversampling
(SMOTE) generates artificial fraud examples through interpolation between existing fraud instances in feature space.
Class weight adjustment in loss functions penalizes misclassification of fraud samples more heavily than genuine traffic
errors.
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Threshold optimization determines the classification decision boundary converting continuous fraud probability scores
into binary predictions, balancing precision and recall according to operational priorities. The precision-recall curve
characterizes threshold-dependent performance:

N TP(t)
Precision(t) = TP(t) + FP(t)
Recall(t) = i

TP(t) + FN(t)

Operational deployment employs multiple threshold tiers implementing graduated response actions. Threshold t: = 0.92
triggers immediate blocking for high-confidence fraud applied to 4.7% of traffic. Threshold t. = 0.68 initiates additional
validation including device fingerprint verification affecting 8.3% of traffic. Traffic below ts = 0.35 receives normal
processing without fraud intervention.

Figure 2: Ensemble Classification Architecture and Decision Boundaries

A. XGBoost Decision Tree Structure B. Random Forest Architecture C. Neural Network Layers
= Input (47 features) Hidden 1 (128) Hidden 2 (64) Hidden 3 (32)
Root Split Tree 1 Tree 2 Tree 3
Inter-click variance| Split: Nav entropy Split: Dwell variance Split: Conn ratio . Temporal
< 450ms? threshold: 2.1 bits threshold: 890ms? threshold: 3.4 @ svatial Output
Vote: Genuine Vote: Fraud Vote: Genuine @ Netvork @

Device .
Dwell time .. 497 pAbre trees ... © ; : p(fraud)
< 890ms :

Gesture curve
<0.03 rad/px

Majszl:g]:?;;\g:egsg(g:g;/ﬂ)on Network Configuration: Performance:
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p=0.94 p=0.12 p=0.07 p=0.78 ) ki « Activation: ReLU (hidden), Sigmoid (outrtgcision: 0.87
v « Dropout rate: 30% (training) * Recall: 0.84
. « Optimizer: Adam (Ir=0.001) « F1-Score: 0.855
Tree Parameters: Ensemble Output « Loss: Binary cross-entropy « Inference: 12ms/sample
« Max depth: 8 levels p(fraud) = 0.426 « Batch size: 256 « Model size: 31.4 MB
* 200 trees in ensemble « Training epochs: 50
« Learning rate: 0.05 Forest Par B p:
* L2 regularization: A=1.0 « Total trees: 500 + Sample: 63.2% of data
* Binary cross-entropy loss « Gini impurity criterion « Out-of-bag validation
D. Ensemble Weighted Voting and Final Decision
XGBoost Output Random Forest Output Neural Network Output Weighted Voting Formula
Fraud probability: 0.94 Fraud probability: 0.92 Fraud probability: 0.89 p_ensemble = X wipi / T wi
Model weight: 0.35 Model weight: 0.32 Model weight: 0.33 B
Validation AUC: 0.94 Validation AUC: 0.92 Validation AUC: 0.89 =(0.329+0.294 +0.294) /1.0
Weighted score: 0.329 Weighted score: 0.294 =0.917
Final Ensemble Decision Model Performance Comparison Threshold Tiers
Fraud probability: 0.917 Model AUC Precision Recall F1 t\ ) 8 22: Efﬁmy
Threshold: t; = 0.92 (not met) XGBoost 0.94 0.95 0.93 0.940 l) _ 0'35: Normal
Threshold: t, = 0.68 (exceeded) Random Forest 0.92 0.92 0.90 0.910 BT
Action: Enhanced Scrutiny Engeniie 098 .85 8:84 6:82%

This figure visualizes the ensemble classification system across three panels. Panel A shows the three parallel
classification pipelines processing the same input feature vector. The first pipeline depicts XGBoost gradient boosting
with a tree visualization showing 8-level depth and split conditions based on inter-click interval variance (root split at
450ms?) and gesture curvature (second-level split at 0.03 rad/px). Tree leaf nodes display fraud probability outputs
ranging from 0.07 to 0.94.

The second pipeline illustrates the random forest architecture with 500 decision trees. A representative tree subset (5
trees) shows diverse splitting strategies using different feature combinations. Trees split on navigation entropy (threshold
2.1 bits), dwell time variance (threshold 890ms?), and connection reuse ratio (threshold 3.4). Individual tree predictions
aggregate through majority voting producing ensemble probability.

The third pipeline presents the neural network architecture with three fully-connected hidden layers. Input layer receives
47 normalized features with color-coded categories (blue: temporal features, green: spatial features, red: network
features, orange: device features). Hidden layers show 128, 64, and 32 units with ReLU activation functions and 30%
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dropout masks (indicated by grayed-out units). Output layer sigmoid activation produces fraud probability score.
Network weights visualization uses line thickness to indicate connection strength.

Panel B displays decision boundary visualization in 2D feature space using t-SNE dimensionality reduction of the full
47-dimensional space. Scatter plot shows 10,000 sample points colored by ground truth labels (blue: genuine, red: fraud).
Three overlaid contour lines represent decision boundaries from individual models (dashed lines) and final ensemble
boundary (solid thick line). Ensemble boundary shows smoother, more conservative classification compared to
individual models, reducing false positive rate in ambiguous regions.

Panel C presents precision-recall curves for each model and the ensemble. XGBoost curve (green) achieves AUC 0.94,
random forest (blue) reaches 0.92, neural network (purple) obtains 0.89, and ensemble (red bold) peaks at 0.96. Operating
points mark three deployment thresholds: t:=0.92 (precision 0.97, recall 0.84), t-=0.68 (precision 0.91, recall 0.93), and
t:=0.35 (precision 0.78, recall 0.98). Shaded regions indicate confidence intervals from 5-fold cross-validation.

Figure 3: Multi-Threshold Response System

Multi-Threshold Graduated Response Framework

13 tz th
Fraud Probability Normal Processing k
0.0 0.35 0.68 0.92 1.0
54.2% of traffic 32.8% of traffic 8.3% of traffic 4.7% of traffic

Green Zone (0.0 - 0.35) Yellow Zone (0.35 - 0.68) Orange Zone (0.68 - 0.92) Red Zone (0.92 - 1.0}
Input: Ad Request Input: Ad Request Input: Ad Request Input: Ad Request
Fraud probability = 0.35 Fraud probability: 0.35-0.68 Fraud probability: 0.68-0.92 Fraud probability = 0.92
Low-risk classification Moderate risk signals High risk signals Very high confidence

Normal behavioral patterns Requires validation Requires deep analysis Critical fraud indicators
Direct Ad Serving Device Fingerprint Check Comprehensive Analysis Immediate Block
Mo fraud intervention Compare vs historical DB » Cross-session pattern matching Mo ad serving
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5 c Yes Audit Trail Generation
Avg latency: 89ms Match? Passed validatio Serve with )
False positive rate: 0.1% Normal process Monitoring + Log fraud characteristics
Revenue retention: 100% 75% of tier Enhanced logs * Store behavioral patterns
Fraud detected: 1.2% No 62% of tier * Update threat intelligence
No * Attribution analysis

Escalate to Scrutiny

Falled fingerprint check Manual Review Queue
Ad Successfully Served = Failed all checks
_— Mot
36X of tler Zero monetization

Average Latency: 234ms ‘

False positive rate: 0.3%

Fraud detection rate: 42.3% Average Latency: 112ms

Average Latency: 687ms ’

Fraud detection rate: 98.7%

System-Wide Performance Summary

Overall fraud dtection: 96.7% False positive rate: 0.4% Avg processing time: 167ms Daily requests: 2.38

This figure illustrates the graduated response framework across fraud probability ranges. A horizontal probability axis
spans 0.0 to 1.0 with three color-coded zones: green (0.0-0.35) for normal processing, yellow (0.35-0.68) for validation
tier, orange (0.68-0.92) for enhanced scrutiny, and red (0.92-1.0) for immediate blocking.

Four vertical swim lanes show processing flows for each tier. The green zone (54.2% of traffic) shows direct ad serving
without fraud intervention. The yellow zone (32.8% of traffic) triggers device fingerprint verification comparing current
session fingerprint against historical database. Matching historical fingerprints associated with previous genuine sessions
receive normal processing; new or inconsistent fingerprints escalate to enhanced scrutiny.

The orange zone (8.3% of traffic) initiates comprehensive behavioral analysis including cross-session pattern matching,
IP reputation checks, and user agent validation. Traffic passing all validation checks proceeds to ad serving with
enhanced monitoring. Failed validation escalates to manual review queue.
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The red zone (4.7% of traffic) executes immediate blocking returning error responses to ad requests. Blocked requests
generate audit trail entries for post-incident analysis and fraud operation attribution. A feedback loop (indicated by
curved arrows) updates the classification model based on manual review outcomes from orange zone escalations.

Statistical annotations display average processing latency for each tier: green zone 89ms (feature extraction +
classification only), yellow zone 234ms (+145ms fingerprint verification), orange zone 687ms (+453ms comprehensive
validation), red zone 112ms (+23ms blocking response generation). Daily traffic volume percentages and fraud detection
rates appear for each tier, showing 96.7% of detected fraud concentrated in orange and red zones while maintaining 0.4%
false positive rate across all legitimate traffic.

5. Evaluation and Discussion

5.1 Experimental Setup and Datasets

Dataset construction leverages production advertising traffic from mobile in-app browser environments serving 10.4
million daily active users across 23 geographic markets. The collection period spans 89 days from September 2024
through November 2024, capturing 847,293 complete advertising sessions containing sufficient interaction events for
behavioral analysis. Each session includes timestamped interaction logs, device characteristics, network properties, and
advertiser outcome data indicating whether subsequent user actions followed advertising exposure.

Ground truth labeling combines multiple methodologies addressing the challenge of definitively identifying fraudulent
sessions in large-scale production environments. Automated labeling applies rule-based heuristics identifying obvious
fraud patterns including impossible interaction timing (inter-click intervals < 50ms), inhuman gesture characteristics
(linear trajectories with zero curvature), and device fingerprint anomalies. Expert manual review examines a stratified
random sample of 25,000 sessions, with three independent reviewers labeling each session based on comprehensive
behavioral pattern analysis, achieving inter-rater agreement measured by Cohen's kappa of 0.87.

The labeled dataset contains 67,384 fraud sessions (8.0%) spanning diverse fraud operation types: automated scripts
(43.2%), coordinated networks (38.7%), SDK injection attacks (12.4%), and traffic hijacking (5.7%). The remaining
779,909 genuine sessions reflect organic user traffic across varied advertising content categories. Evaluation metrics
capture multiple performance dimensions relevant to production deployment, including precision, recall, F1-score, and
area under ROC curve (AUC). Baseline methods establish performance benchmarks against state-of-practice fraud
detection approaches including rule-based detection, logistic regression, and Isolation Forest unsupervised anomaly
detection.

5.2 Detection Performance Analysis

Overall detection accuracy results demonstrate strong performance across all evaluation metrics. The ensemble classifier
achieves precision 94.7%, recall 91.3%, and F1-score 92.9% on held-out test data comprising 169,459 sessions (20% of
total dataset). Area under ROC curve reaches 0.967, indicating excellent discrimination capability. These results
substantially exceed baseline method performance: rule-based detection achieves only 67.4% precision and 52.8% recall,
logistic regression reaches 86.2% precision and 79.7% recall, while Isolation Forest obtains 73.5% precision and 68.9%
recall.

Performance analysis across different fraud types reveals variation in detection difficulty. Automated script detection
achieves the highest accuracy with precision 97.3% and recall 94.8%, attributable to distinctive timing and gesture
characteristics. Coordinated network detection proves more challenging, reaching precision 91.4% and recall 86.7%, as
manual fraud operations generate behavioral patterns closer to genuine users. SDK injection attacks exhibit intermediate
detection difficulty with precision 93.8% and recall 89.2%. Traffic hijacking represents the most challenging category
at precision 88.6% and recall 82.4%.

Feature importance analysis through ablation studies quantifies individual feature category contributions. Removing
temporal interaction features decreases F1-score by 8.7 percentage points, confirming these features provide the strongest
fraud discrimination signal. Eliminating spatial gesture characteristics reduces F1 by 6.4 points, while removing session-
level behavioral patterns decreases performance by 5.2 points. Device fingerprint features contribute 3.8 points, and
network signals add 2.9 points. Multi-dimensional feature integration impact emerges through comparison against
single-category classifiers: temporal features alone achieve F1-score 84.2%, spatial features reach 78.6%, session
patterns obtain 76.3%, device fingerprints achieve 71.8%, and network signals reach 69.4%. The full multi-dimensional
classifier at 92.9% F1 substantially exceeds any single category, validating the integration approach.
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Table 5 presents comprehensive performance metrics across fraud operation types and detection methodologies.

Table 5: Detection Performance by Fraud Type and Method

Automated Coordinated . L. Traffic

Method Seripts Networks SDK Injection Hijacking Overall
Ensemble P: 973% / R: P: 914% / R: P: 93.8% / R: P: 88.6% / R: P: 94.7% / R:
(Proposed) 94.8% 86.7% 89.2% 82.4% 91.3%
Rule-Based P: 782% / R: P: 547% / R: P: 693% / R: P: 51.8% / R: P: 67.4% / R:
Baseline 63.4% 41.2% 58.7% 38.9% 52.8%
Logistic P: 921% / R: P: 798% / R: P: 84.6% / R: P: 76.3% / R: P: 86.2% / R:
Regression 88.3% 72.4% 76.8% 68.2% 79.7%

. P: 814% / R: P: 648% / R: P: 72.7% / R: P: 63.2% / R: P: 73.5% / R:
Isolation Forest ¢ 5o, 59.3% 65.8% 56.7% 68.9%
Random P: 948% / R: P: 873% / R: P: 904% / R: P: 84.7% / R: P: 91.6% / R:
Only 91.2% 82.6% 85.3% 78.9% 87.8%

5.3 Limitations, Privacy Implications, and Future Directions

Potential evasion strategies exist that sophisticated adversaries might employ to bypass the detection methodology.
Adversarial machine learning techniques could generate fraudulent interactions specifically optimized to evade
classification boundaries learned during training. Attackers with access to classification model parameters could craft
fraud operations producing feature values in regions of feature space associated with genuine traffic. The ensemble
approach provides partial robustness against such attacks through model diversity, though future work should investigate
adversarial training techniques where the classifier trains on synthetically generated adversarial examples.

Privacy-utility trade-offs emerge from tension between comprehensive behavioral data collection enabling accurate
fraud detection and data minimization principles protecting user privacy. The current methodology maintains detection
performance across privacy budget ranges £=0.5 to £€=2.0, demonstrating feasibility of privacy-preserving fraud
detection. More restrictive privacy constraints (¢ < 0.5) begin degrading performance, with F1-score declining to 87.3%
at e=0.3. Organizations must balance fraud prevention requirements against regulatory compliance obligations and user
privacy expectations across different jurisdictions.

Scalability considerations for production deployment address computational resource requirements for processing
billions of daily advertising sessions. The current implementation achieves throughput of 12,400 classifications per
second on commodity server hardware (Intel Xeon E5-2680, 128GB RAM), sufficient for mid-scale advertising
platforms but requiring horizontal scaling for larger deployments. Feature extraction parallelizes effectively across server
clusters, as individual sessions process independently. Model serving optimization through TensorFlow Lite quantization
reduces neural network inference latency by 47% while maintaining accuracy within 0.3 percentage points.

Directions for future research include investigation of few-shot learning approaches addressing the challenge of detecting
novel fraud operation types with limited labeled examples. Transfer learning across advertising platforms could improve
detection on smaller platforms lacking extensive fraud training data by transferring knowledge from larger platforms.
Federated learning architectures could enable collaborative fraud detection across competing advertising platforms while
preserving competitive business intelligence through privacy-preserving model aggregation techniques.
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