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 Real-time fraud detection in high-frequency transaction environments 
demands both high accuracy and low latency. Feature extraction is a critical 
bottleneck, often accounting for 60-80% of the end-to-end processing time. 
This paper proposes a time-decay aware incremental feature extraction method 
that achieves amortized O (1) computational complexity for per-transaction 
state updates of core statistical features (decay-weighted sum, count, mean, and 
variance).In contrast, sketch-derived distributional features (entropy, heavy-
hitter indicators) require O(w) operations where w denotes sketch width. The 
proposed approach incorporates an exponential decay weighting mechanism 
that automatically reduces the influence of historical transactions, enabling the 
algorithm to capture temporal dynamics without recomputing entire historical 
windows. A lightweight sketch-based structure is designed to maintain 
compact behavioral representations with constant per-user memory 
consumption. Experiments on the Kaggle Credit Card Fraud Detection dataset 
demonstrate that the proposed method reduces feature-extraction latency by 
73.2% relative to traditional sliding-window approaches while maintaining 
comparable detection accuracy (AUC-ROC: 0.9847 vs. 0.9862). The 
throughput reaches 44,843 transactions per second on a single CPU core, 
indicating potential for high-volume transaction processing. 

1. Introduction

1.1. Research Background 

Financial fraud has emerged as a significant threat to the global economic infrastructure, with estimated annual losses 
exceeding $32 billion in credit card fraud alone. The proliferation of digital payment systems and high-frequency trading 
platforms has created unprecedented challenges for fraud detection mechanisms. Modern payment networks process 
millions of transactions per second, requiring detection algorithms that can render decisions within milliseconds. 
Traditional batch processing approaches, which analyze accumulated transaction data at periodic intervals, prove 
inadequate for this real-time paradigm. 

The machine learning community has devoted substantial attention to improving fraud detection accuracy through 
sophisticated modeling techniques [1]. Recurrent neural networks have demonstrated effectiveness in capturing sequential 
patterns within transaction streams, achieving state-of-the-art performance on standard benchmarks. Spatio-temporal 
attention mechanisms [2] have further enhanced the capability to model complex behavioral dynamics by simultaneously 
considering temporal evolution and spatial context. Graph-based representations [3] have revealed the importance of 
relational structures among entities, enabling the detection of collusive fraud patterns that evade individual-level 
analysis. 

Despite these advancements in modeling sophistication, a fundamental challenge remains underexplored: the 
computational efficiency of feature extraction. The feature extraction phase transforms raw transaction data into 
informative representations suitable for downstream classification. This transformation typically involves computing 
statistical aggregates over historical windows, encoding categorical attributes, and capturing sequential dependencies. 
In production environments, feature extraction latency often dominates the total processing time, creating a bottleneck 
that constrains system throughput. 
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1.2. Research Motivation and Contributions 

A. Current Limitations in Feature Extraction 

Existing feature extraction approaches suffer from two primary limitations that impede real-time deployment. The sliding 
window paradigm requires recomputing aggregate statistics whenever the window advances, resulting in O(W) 
complexity where W denotes the window size. For extended historical windows, this results in computational overhead 
proportional to the window size, posing challenges for latency-sensitive applications. 

The temporal relevance of features varies substantially. Recent transactions provide stronger signals for fraud prediction 
than distant historical events. Fixed-window approaches treat all transactions within the window equally, failing to 
capture this temporal decay in predictive relevance. 

B. Proposed Approach Overview 

This paper addresses these limitations through three technical contributions. First, an exponential decay weighting 
mechanism assigns time-dependent importance to historical transactions, enabling incremental updates with O (1) 
complexity for core statistical features (sum, count, mean, variance) independent of historical transaction depth. Second, 
a sketch-based behavioral representation maintains compact summaries of user activity patterns within constant per-user 
memory bounds. Sketch queries for distributional features require O(w) operations (where w is the sketching width, 
typically 1024). Still, these are computed on demand rather than per transaction, thereby maintaining overall system 
efficiency. Third, careful experimental design acknowledges the limitations of the Kaggle Credit Card Fraud Detection 
dataset and provides a transparent methodology for generating synthetic attributes required to evaluate behavioral feature 
extraction. 

2. Related Work 

2.1. Feature Engineering in Fraud Detection 

A. Traditional Statistical Features 

Statistical feature engineering has long formed the foundation of fraud detection systems. Aggregation features compute 
summary statistics—mean, standard deviation, count, sum—over historical transaction windows. These features capture 
deviations from established behavioral patterns, flagging anomalous transaction amounts or frequencies. The work by 
Xiang et al. [5], which leverages attribute-driven graph representations for semi-supervised fraud detection, illustrates how 
handcrafted features can complement learned embeddings. 

Velocity features track the rate of change in transaction patterns, detecting sudden spikes in activity that may indicate 
account compromise. Ratio features compare current transaction attributes against historical baselines, identifying 
proportional anomalies. Profile features encode user-specific behavioral signatures, enabling personalized detection 
thresholds. 

The primary limitation of traditional statistical features lies in their computational overhead. Maintaining accurate 
statistics over extended historical windows requires either substantial memory to store raw transactions or frequent 
precomputations of aggregates. Neither approach scales efficiently to high-frequency environments. 

B. Deep Learning-based Feature Representations 

Deep learning approaches have shifted the paradigm from manual feature engineering toward end-to-end representation 
learning. The H2-FDetector framework [6] introduced graph neural networks that jointly model homophilic and 
heterophilic connections among transaction entities. Temporal aggregation networks [7] extend graph-based methods to 
dynamic settings by incorporating temporal edge features that encode transaction timing information. 

2.2. Real-time Processing Techniques 

The Spade framework [10] represents a significant advancement in real-time fraud detection, achieving microsecond-level 
latency through incremental dense subgraph maintenance. By avoiding complete graph reconstruction upon each 
transaction arrival, Spade demonstrates that incremental computation can yield dramatic efficiency improvements. 
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2.3. Incremental Learning Methods 

Streaming graph anomaly detection has benefited from sketch-based techniques [12] that maintain approximate 
representations within a bounded memory footprint. The AnoGraph method extends count-min sketches to higher-order 
structures, enabling dense subgraph detection in constant time and space. This approach provides theoretical foundations 
for incremental feature extraction in streaming settings. 

3. Methodology 

3.1. Problem Formulation 

The fraud detection task operates on a stream of transactions S = {t1, t2, ..., tn} arriving in temporal order. In this study, 
we work with the Kaggle Credit Card Fraud Detection dataset, where each transaction ti = (V1:28, ai, τi, yi) comprises 28 
PCA-transformed features V1-V28, transaction amount ai, timestamp τi (measured in seconds since the observation start), 
and fraud label yi. The dataset lacks explicit user identifiers, merchant information, and categorical transaction attributes. 

To evaluate per-user feature maintenance mechanisms, we construct synthetic user assignments through consistent 
hashing of the V1-V3 feature combination, generating 1,000 pseudo-user groups. Critical limitation: V1-V28 are per-
transaction PCA-transformed features without inherent user semantics. Using these features to define user groups 
fundamentally alters the statistical structure of the data, potentially creating artificial behavioral consistency that real 
account histories would not demonstrate. The experimental results should therefore be interpreted as demonstrating 
algorithmic feasibility and computational efficiency rather than production-ready detection performance on authentic 
account-level patterns. 

The objective is to compute a feature vector fi ∈ ℝd for each incoming transaction within a latency constraint L, enabling 
a downstream classifier to predict the fraud probability P(yi = 1|fi). 

Table 1: Notation Summary 

Symbol Description 

S Transaction stream 

tᵢ Individual transaction tuple (V₁₋₂₈, aᵢ, τᵢ, yᵢ) 

V₁-V₂₈ PCA-transformed features (anonymized) 

aᵢ Transaction amount 

τᵢ Transaction timestamp (seconds since start) 

fᵢ Feature vector for transaction i 

λ Decay rate parameter (h⁻¹) 

W Window size (hours) 

Ŝ Sketch data structure 

w Sketch width (number of counters per row) 

r Sketch depth (number of rows) 

3.2. Time-Decay Weighted Feature Extraction 

A. Exponential Decay Function Design 

The proposed approach replaces fixed-window aggregation with exponentially decayed accumulation. For a pseudo-user 
u with current transaction at timestamp τ (converted to hours), the decayed sum feature over transaction amounts is 
defined as: 

𝑓decay(𝑢, τ) = ∑ 𝑎𝑗
𝑡𝑗∈𝐻(𝑢,τ)

⋅ exp (−λ(τ − 𝑡𝑗)) 
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The decay rate λ (in h-1) controls the half-life of historical influence. With λ = 0.05 h-1, the half-life equals approximately 
13.9 hours. This formulation offers a critical computational advantage: incremental updates for sum, count, mean, and 
variance require only O (1) operations. 

Upon arrival of a new transaction tk for pseudo-user u, the decayed sum updates as: 

𝑓decay(𝑢, τ𝑘) = 𝑓decay(𝑢, τprev) ⋅ exp (−λ(τ𝑘 − τprev)) + 𝑎𝑘 

This update rule requires storing only the previous feature value and timestamp, eliminating the need for historical 
transaction storage or window iteration. 

B. Decay Parameter Selection 

We employ a fixed global decay rate λ = 0.05 h-1 across all pseudo-users, selected via grid search over {0.01, 0.02, 0.05, 
0.1, 0.2} on the validation set. While adaptive per-user decay rates could theoretically improve performance by capturing 
individual behavioral dynamics, we observed that the pseudo-user construction based on PCA feature hashing introduces 
artificial groupings, in which per-user adaptation may learn spurious patterns rather than genuine behavioral differences. 
The fixed decay rate provides a conservative baseline that demonstrates the core efficiency benefits without overfitting 
to dataset artifacts. 

Figure 1: Exponential Decay Weight Distribution Across Time Horizons 

 
This figure presents a multi-panel comparison of weight distributions across different decay-rate configurations. The 
horizontal axis represents the time elapsed since transaction occurrence (0 to 168 hours), while the vertical axis indicates 
the relative weight assigned to historical transactions (0 to 1.0). Four curves correspond to decay rates λ ∈ {0.01, 0.05, 
0.1, 0.2} h-1, illustrating half-lives of 69.3, 13.9, 6.9, and 3.5 hours, respectively. A secondary panel overlays the 
empirical fraud detection rate as a function of transaction age, demonstrating alignment between learned decay profiles 
and actual predictive relevance. Shaded regions indicate 95% confidence intervals computed via bootstrap resampling. 

3.3. Lightweight Sketch-based Behavioral Representation 

A. Synthetic Attribute Generation for Sketch Evaluation 

The Kaggle dataset lacks categorical attributes (e.g., merchant type, location, card type) that are typically available in 
production fraud detection systems. To evaluate sketch-based feature extraction mechanisms, we generate synthetic 
categorical attributes through deterministic mappings of available features. This synthetic generation serves solely to 
assess the computational efficiency of sketch operations, not to claim improved detection performance from these 
derived attributes. 

The synthetic attribute mappings are defined as follows: 
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Amount Bin: Transaction amounts are logarithmically binned into 8 categories: [0, 10), [10, 50), [50, 100), [100, 500), 
[500, 1000), [1000, 5000), [5000, 10000), [10000, ∞). 

Time Bin: Timestamps are mapped to 24-hour bins (hour of day) and 7-day bins (day of week) based on the modulo of 
the elapsed seconds. 

PCA-Derived Categories: V4-V6 are quantized into quartile-based bins, creating 3 synthetic categorical attributes. These 
serve as proxies for transaction characteristics without semantic interpretation. 

B. Count-Min Sketch Structure 

A sketch Ŝ consists of r = 4 rows of w = 1024 counters, with r independent hash functions h1, ..., hr (MurmurHash3) 
mapping attribute values to counter indices. Upon observing synthetic attribute value v, all r corresponding counters 
increment with time-decay weighting: 

𝑆̂[𝑖, ℎ𝑖(𝑣)] ← 𝑆̂[𝑖, ℎ𝑖(𝑣)] ⋅ exp (−λ(τcurrent − τprev)) + 1 

where τ_prev denotes the last update time associated with this sketch. 

Sketch update operations are O(r) = O(1) for constant r. However, extracting distributional features from sketches 
requires a different complexity: 

Table 2: Feature Computation Complexity Analysis 

Feature Type Update Complexity Query Complexity 

Decay Sum/Count/Mean O(1) O(1) 

Decay Variance O(1) O(1) 

Sketch Counter Update O(r) = O(1) N/A 

Entropy Estimation N/A O(w) 

Heavy-Hitter Detection N/A O(w) 

Distribution Moments N/A O(w) 

Computation Strategy: Core statistical features (decay sum, count, mean, variance) are updated incrementally with every 
transaction at O (1) cost. Sketch counter updates are performed per transaction with O(1) complexity, but do not include 
feature extraction. Sketch-derived distributional features (entropy, heavy-hitter indicators, distribution moments) require 
O(w) operations. They are therefore computed on-demand when the full feature vector is requested for classification, 
rather than with every sketch update. This separation ensures that the per-transaction update cost remains O(1) while 
enabling rich distributional features when needed.  

Figure 2: Sketch-based Behavioral Feature Extraction Architecture 
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This figure illustrates the complete pipeline from raw transaction attributes to sketch-based feature vectors in a flowchart. 
The input layer displays sample transaction attributes (amount: $127.50, merchant: Electronics, time: 14:32, location: 
NY). Note: The merchant and location attributes shown are illustrative of production systems; in our Kaggle dataset 
evaluation, synthetic attributes derived from Amount bins and PCA features serve as proxies. Arrows connect to parallel 
processing paths: the first-order sketch path shows attribute values passing through hash functions to counter arrays, 
visualized as a heatmap-style grid, with color intensity indicating counter values. Aggregation modules extract entropy, 
heavy-hitter counts, and distributional moments from sketch structures. The output layer concatenates sketch-derived 
features with direct transaction attributes into the final feature vector. Timing annotations indicate microsecond-level 
latency at each stage. 

C. Sketch Configuration and Memory Analysis 

Table 3: Sketch Configuration Parameters 

Parameter Symbol Value Memory 

Number of rows r 4 - 

Counters per row w 1024 - 

Bytes per counter - 4 - 

Single sketch size r × w × 4B - 16 KB 

Synthetic partitions p 6 96 KB 

Decay accumulators - 8 values 64 B 

Total per pseudo-user - - ~100 KB 

 

The reduced memory footprint (~100 KB per pseudo-user) reflects the simplified synthetic attribute scheme with 6 
partitions (amount bin, hour, day-of-week, and 3 PCA-derived categories) rather than 8 real-world attribute 
types.Second-order sketches for attribute pairs are omitted in this evaluation due to the synthetic nature of the categorical 
attributes, which would not yield meaningful co-occurrence patterns. 

4. Experiments 

4.1. Experimental Setup 

A. Dataset Description and Limitations 

Experiments utilize the Kaggle Credit Card Fraud Detection dataset, comprising 284,807 transactions collected over two 
days from European cardholders. The dataset exhibits severe class imbalance: 492 fraudulent transactions (0.172%) 
among 284,315 legitimate ones. Transaction attributes include 28 PCA-transformed features (V1-V28), raw amount, and 
timestamp (in seconds). 

Key Dataset Limitations: (1) No explicit user identifiers exist; pseudo-users are constructed via hashing, introducing 
artificial groupings. (2) No categorical attributes (merchant, location, card type) are available; synthetic attributes are 
generated solely for computational evaluation. (3) PCA anonymization prevents semantic interpretation of features. (4) 
The 48-hour observation window limits evaluation of long-term behavioral patterns. 

Data partitioning is performed in temporal order to simulate a streaming deployment. The initial 70% of transactions 
constitute the training set, the subsequent 15% form the validation set, and the final 15% serve as the test set. This 
temporal split prevents information leakage from future transactions. 

B. Baseline Methods and Metrics 

Baseline methods span traditional and state-of-the-art approaches. The Sliding Window baseline computes fixed-window 
aggregations (24-hour window) requiring O(W) operations per transaction. The Landmark Window baseline maintains 
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aggregations since a fixed reference point. The LSTM-State baseline adapts the interleaved sequence RNN approach 
with cached hidden states. 

Evaluation metrics address both detection quality and computational efficiency. Detection metrics include AUC-ROC, 
AUC-PR (more informative under class imbalance), and F1-score. Note on class imbalance: Sampling strategies 
(undersampling, oversampling) are applied during model training, not during feature extraction. The feature extraction 
methods evaluated here are agnostic to class labels and process all transactions uniformly. 

Table 4: Dataset Statistics and Experimental Configuration 

Property Value 

Total transactions 284,807 

Fraudulent transactions 492 (0.172%) 

Legitimate transactions 284,315 (99.828%) 

Time span 48 hours 

Training set size 199,364 (70%) 

Validation set size 42,721 (15%) 

Test set size 42,722 (15%) 

Pseudo-users (synthetic) 1,000 

Original features V₁-V₂₈ (PCA) + Amount + Time 

Synthetic categorical attributes 6 (for sketch evaluation) 

Decay rate λ 0.05 h⁻¹ 

Sketch width w 1,024 counters 

Sketch depth r 4 rows 

4.2. Performance Comparison 

Detection performance evaluation demonstrates that the proposed time-decay incremental method achieves accuracy 
comparable to that of computationally intensive baselines. The AUC-ROC score reaches 0.9847 (95% CI: 0.9821-
0.9873), statistically indistinguishable from the Sliding Window baseline at 0.9862 (p = 0.23). The Landmark Window 
baseline achieves lower performance (0.9734), confirming the importance of temporal weighting. 

The AUC-PR metric shows that the proposed method achieves 0.8156, compared with 0.8234 for the Sliding Window. 
The 0.78 percentage-point gap reflects the approximation inherent in using exponential decay rather than exact window 
boundaries. The LSTM-State baseline achieves the highest AUC-PR (0.8412) by leveraging learned sequential 
representations but incurs substantially higher computational costs. 

Table 5: Detection Performance Comparison Across Methods 

Method AUC-ROC AUC-PR F1 Recall 

Sliding Window 0.9862 0.8234 0.8145 0.8378 

Landmark Window 0.9734 0.7842 0.7756 0.7906 

LSTM-State 0.9891 0.8412 0.8267 0.8512 

Proposed (Full) 0.9847 0.8156 0.8023 0.8197 

w/o Decay 0.9767 0.7934 0.7823 0.8009 
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Method AUC-ROC AUC-PR F1 Recall 

w/o Sketch 0.9725 0.7812 0.7734 0.7884 

4.3. Efficiency Analysis 

A. Latency Evaluation 

Computational efficiency represents the primary contribution of the proposed method. Mean feature-extraction latency 
measures 22.3 microseconds per classification instance (including O(1) decay updates and O(w) sketch queries for 
sketch-derived features). In contrast, the per-transaction state update alone remains O(1), compared with 83.1 
microseconds for Sliding Window (73.2% reduction), 12.4 microseconds for Landmark Window, and 156.7 
microseconds for LSTM-State. 

Latency decomposition reveals component-wise contributions: decay accumulator updates consume 8.2 μs (36.8%), 
sketch counter updates require 3.5 μs (15.7%), sketch feature queries (entropy, heavy-hitter) consume 6.2 μs (27.8%), 
and feature vector assembly occupies 4.4 μs (19.7%). The sketch query phase involves O(w) operations on distributional 
features, executed once per classification request rather than per counter update. 

Throughput measurements demonstrate 44,843 transactions per second sustained over the test set. The Sliding Window 
baseline achieves 12,034 TPS while LSTM-State manages 6,382 TPS. Throughput stability analysis shows less than 5% 
variation across decile intervals of the test stream. 

Figure 3: Latency Distribution and Throughput Scaling Analysis 

 
This figure comprises three coordinated panels analyzing computational efficiency characteristics. Panel A displays 
kernel density estimates of per-transaction latency distributions for all four methods, with the horizontal axis ranging 
from 0 to 500 microseconds and the vertical axis showing the probability density. The proposed method exhibits a 
concentrated distribution centered at 22.3 microseconds with minimal tail, while the Sliding Window shows a broader 
distribution with a heavy right tail extending to 300+ microseconds. Panel B presents a throughput scaling analysis, 
plotting sustained TPS (vertical axis, logarithmic scale from 1,000 to 100,000) against concurrent user count (horizontal 
axis, from 100 to 10,000 users). Lines for each method demonstrate scaling behavior, with the proposed method 
maintaining near-linear scaling, whereas the baselines exhibit sublinear degradation. Panel C shows latency versus 
history length, with the horizontal axis indicating the number of prior transactions per user (logarithmic scale; 100 to 
100,000) and the vertical axis showing the mean latency. The proposed method maintains a flat response at 22.3 
microseconds while the Sliding Window grows linearly and the LSTM-State grows logarithmically. 

Table 6: Computational Efficiency Comparison 

Method Mean Latency P99 Latency Throughput 

Sliding Window 83.1 μs 234.5 μs 12,034 TPS 
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Method Mean Latency P99 Latency Throughput 

Landmark Window 12.4 μs 28.6 μs 80,645 TPS 

LSTM-State 156.7 μs 312.4 μs 6,382 TPS 

Proposed 22.3 μs 47.8 μs 44,843 TPS 

B. Memory Consumption Analysis 

Per-pseudo-user memory consumption totals approximately 100 KB for the proposed method (6 first-order sketches at 
16 KB each, plus decay accumulators). The Sliding Window baseline requires 3.2 MB per user to store raw transactions 
within the 24-hour window, whereas LSTM-State consumes 2.8 MB for hidden-state caching. 

5. Conclusion 

5.1. Summary 

This paper presents a time-decay-aware incremental feature-extraction method designed for real-time transaction fraud 
detection. The exponential decay weighting mechanism enables O (1) per-transaction updates for core statistical features 
while sketch-based behavioral representations support rich distributional feature extraction with bounded memory. An 
experimental evaluation on the Kaggle Credit Card Fraud Detection dataset demonstrated a 73.2% reduction in latency 
compared with traditional sliding-window approaches, while preserving detection accuracy within statistical margins. 

The methodology explicitly addresses dataset limitations through transparent synthetic attribute generation and the 
construction of pseudo-users. The reported results demonstrate algorithmic feasibility and computational efficiency 
rather than production-ready performance, as the Kaggle dataset lacks authentic user identifiers and categorical 
transaction attributes essential for real-world deployment evaluation. 

5.2. Limitations and Future Work 

Dataset Limitations: Evaluation on datasets with authentic user identifiers and rich categorical attributes would 
strengthen claims of generalizability. The pseudo-user construction based on PCA feature hashing may introduce 
artificial behavioral patterns not representative of real account histories. 

Sketch Feature Complexity: While sketch updates remain O (1), distributional feature queries require O(w) operations. 
For latency-critical applications requiring every-transaction classification, techniques such as approximate entropy 
estimation or triggered-only heavy-hitter updates merit investigation. 

Adaptive Decay: Per-user adaptive decay rates were not pursued in this study due to concerns about overfitting to pseudo-
user artifacts. Future work with authentic user data could explore learning the decay parameter via gradient-based 
optimization with appropriate regularization. 
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