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Abstract

Federated learning in fleets faces critical challenges in balancing privacy
protection with model performance when processing sensitive vehicular data.
Traditional fixed privacy budget allocation strategies fail to account for the
dynamic nature of distributed training across heterogeneous vehicle nodes.
This research proposes an adaptive privacy budget allocation mechanism that
dynamically adjusts differential privacy parameters based on training

progression and parameter importance. The methodology integrates Fisher
Information Matrix evaluation for layer-wise budget distribution and
implements a round-based allocation strategy that concentrates privacy
resources during critical learning phases. Experimental validation on the
nuScenes and FEMNIST datasets demonstrates that the adaptive approach
achieves 8.7% higher model accuracy than uniform budget allocation while
maintaining equivalent privacy guarantees at £=3.5. Communication efficiency
is improved by 23.4% by reducing the number of convergence rounds. The
framework provides fleet operators with practical guidance for implementing
privacy-preserving collaborative learning systems that meet regulatory
requirements while optimizing operational performance metrics.

1. Introduction

1.1. Research Background and Problem Statement

The proliferation of autonomous vehicle technologies has generated unprecedented volumes of sensitive operational data
requiring collaborative analysis while preserving individual privacy. Fleet operators accumulate diverse datasets
encompassing location trajectories, driving patterns, and environmental sensor readings that collectively enable
enhanced autonomous capabilities ['!. Privacy-preserving collaborative learning frameworks have emerged as essential
infrastructure for leveraging distributed vehicular data without centralized collection. Differential privacy mechanisms
provide mathematical guarantees against privacy leakage during model training aggregation processes 1.

Current implementations predominantly employ static privacy budget allocation schemes that apply uniform noise
addition across all training iterations and model parameters . This approach introduces several operational
inefficiencies, which are particularly problematic in resource-constrained vehicular computing environments. Fixed-
budget strategies fail to account for the fact that model parameters exhibit varying sensitivity to privacy perturbations
throughout training. Early training phases require sufficient gradient information for directional convergence, while later

stages benefit from noise reduction to achieve optimal performance 1.

The heterogencous nature of fleet participation patterns further complicates privacy budget management. Vehicle nodes
demonstrate irregular availability due to operational schedules, network connectivity variations, and computational
resource fluctuations. Static allocation mechanisms cannot adapt to these dynamic participation patterns, resulting in
either excessive privacy degradation or unnecessary sacrifices in model accuracy ©°!. Cross-border fleet operations
introduce additional complexity through varying regulatory requirements and threat models across jurisdictions.

Recent advances in adaptive learning rate scheduling and parameter-specific optimization strategies suggest potential
for analogous approaches in privacy budget allocation . Machine learning workflows increasingly incorporate dynamic
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resource management based on assessments of training state and parameter importance metrics. Transferring these
principles to differential privacy frameworks could enable more efficient privacy-utility tradeoffs specifically tailored
for vehicular federated learning scenarios (7).

1.2. Current Status and Challenges
A. Progress in Privacy-Preserving Fleet Federated Learning

Academic and industrial research has established foundational architectures for privacy-preserving vehicular
collaborative learning. Secure aggregation protocols provide cryptographic protection for individual model updates
during aggregation phases without revealing participants’ contributions *1. Homomorphic encryption techniques support
computations on encrypted gradients, providing theoretical privacy guarantees at substantial computational costs. Recent
deployments on ride-sharing platforms and in autonomous-vehicle testing programs demonstrate the practical feasibility
of federated learning for transportation applications.

Regulatory frameworks increasingly mandate the protection of privacy in location-based services and autonomous-
vehicle data collection. The General Data Protection Regulation and California Consumer Privacy Act establish legal
requirements for data minimization and purpose limitation. Transportation-sector-specific guidelines from agencies,
including the National Highway Traffic Safety Administration, emphasize privacy-by-design principles for connected-
vehicle systems . These regulatory pressures accelerate the adoption of mathematically provable privacy mechanisms
such as differential privacy.

B. Limitations of Existing Privacy Budget Allocation Methods

Contemporary privacy budget allocation strategies predominantly follow two paradigms: uniform distribution across
training rounds or proportional allocation based on dataset size. Uniform allocation assigns the same privacy budget to
each communication round, regardless of training dynamics or model convergence. This approach simplifies
implementation and theoretical analysis but ignores the empirical observation that gradient magnitudes and parameter
sensitivities evolve substantially throughout training %/,

Dataset-proportional allocation scales privacy budgets according to local dataset sizes, assuming that larger datasets
contain more information and therefore require stronger privacy protection. This method addresses fairness concerns in
heterogeneous data distribution scenarios but fails to account for temporal training dynamics !''l. Both approaches treat
all model parameters equally, despite clear evidence that different layers contribute differently to final model

performance ],

2. Related Work

2.1. Differential Privacy Techniques in Federated Learning
A. Global Differential Privacy vs. Local Differential Privacy

Differential privacy frameworks for federated learning can be classified into global and local privacy models, with
distinct trust assumptions and performance characteristics. Global differential privacy applies noise addition at the
central aggregator after collecting participant updates, requiring trust in the aggregation server but enabling tighter
privacy-utility tradeoffs. Local differential privacy requires each participant to add noise to their model updates before
transmission, eliminating centralized trust requirements at the cost of higher noise magnitudes for equivalent privacy
guarantees.

The mathematical formulation of (g, 8)-differential privacy establishes that for any two neighboring datasets differing
by one record, the probability of observing any output differs by at most a multiplicative factor of e*e plus additive 6.
The privacy budget parameter ¢ quantifies the privacy loss; smaller values provide stronger guarantees but require
proportionally larger noise additions. The composition theorem governs the accumulation of privacy budgets across
multiple queries or training iterations, necessitating careful budget management over extended training periods.

B. Privacy Budget Management and Moments Accountant

Advanced accounting mechanisms enable more precise privacy budget tracking compared to naive composition bounds.
The Moments Accountant framework, developed for differentially private stochastic gradient descent, yields tighter
privacy-loss bounds by analyzing the moment-generating function of the privacy-loss random variable. This approach
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reduces conservatism in privacy accounting, thereby enabling longer training durations for equivalent privacy guarantees
compared with elemental composition.

Rényi differential privacy offers an alternative formulation that simplifies composition analysis through additive
properties of Rényi divergence. Recent theoretical work establishes connections among different privacy accounting
frameworks and derives optimal conversion bounds. These advances enable practitioners to select appropriate accounting
mechanisms based on specific deployment constraints and desired privacy-utility operating points.

2.2. Characteristics Analysis of Federated Learning in Fleet Scenarios

Fleet federated learning exhibits characteristics that distinguish it from conventional federated learning deployments.
Vehicle nodes operate under strict computational and energy constraints due to embedded-system limitations and battery
constraints. Network connectivity varies substantially across geographic regions and operational contexts, with vehicles
experiencing intermittent connectivity during travel. These resource constraints necessitate communication-efficient
protocols that minimize both data transmission volume and the frequency of communication rounds 3

Data heterogeneity in vehicular scenarios extends beyond simple non-IID distributions observed in mobile device
federations. Geographic and demographic factors produce systematic variation in driving patterns, traffic conditions, and
environmental contexts among fleet participants. Temporal dynamics introduce additional complexity, as individual
vehicle usage patterns evolve over timescales ranging from diurnal cycles to seasonal variations. Standard federated
optimization algorithms designed for 11D data distributions exhibit degraded convergence properties and reduced model
quality when applied to vehicular data.

Security threats specific to vehicular networks include malicious participants attempting to poison model training
through adversarial updates. Byzantine fault tolerance mechanisms must operate in concert with privacy protection to
ensure both data confidentiality and model integrity. The intersection of privacy preservation and robustness poses
particular challenges, as differential privacy noise can obscure the detection of Byzantine attacks.

2.3. Survey of Adaptive Privacy Budget Allocation Methods

Emerging research explores dynamic privacy budget allocation strategies that adjust noise levels based on indicators of
the training state. Gradient-norm-based approaches scale noise addition inversely proportional to gradient magnitude,
thereby concentrating privacy budgets when gradients carry maximal learning signal. This heuristic aligns with empirical
observations that early training iterations with large gradients tolerate less noise before accuracy degradation occurs.

Layer-wise differentiated allocation strategies assign varying privacy budgets to different neural network layers based
on parameter importance metrics. Sensitivity analysis using the Fisher information matrix identifies the parameters with
the greatest impact on model predictions, enabling selective protection of critical parameters. Alternative approaches
employ neural architecture search techniques to automatically discover privacy-optimal subnetworks that require
concentrated protection !4,

Reinforcement learning frameworks treat privacy budget allocation as a sequential decision problem, training policy
networks to optimize allocation decisions based on observed training dynamics. These adaptive methods demonstrate
improved privacy-utility tradeoffs compared to static baselines but introduce implementation complexity and
hyperparameter sensitivity challenges. Theoretical analysis of convergence guarantees for adaptive allocation schemes
remains an active research area with limited formal results %,

3. Adaptive Privacy Budget Allocation Algorithm Optimization

3.1. Problem Formulation and Optimization Objectives

The fleet federated learning system comprises N vehicle nodes, each maintaining a local dataset D i with |D _i| samples.
The central aggregation server coordinates T communication rounds without accessing raw participant data. Each vehicle
i computes local model updates 0 i*t at round t through gradient descent on its private dataset. The aggregation
mechanism combines these updates to produce the global model 0°(t+1) .

Differential privacy protection adds calibrated noise to model updates before aggregation. The privacy budget allocation
problem seeks to determine optimal noise-scaling parameters 0 t for each round t and, potentially, layer-specific
parameters 0 _t"l for neural network layer l. The optimization objective balances three competing factors: minimizing
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the total privacy budget consumed (X t € t< ¢ total), maximizing final model accuracy on held-out validation data,
and minimizing the number of communication rounds required for convergence.

Formally, the optimization problem is expressed as: minimize E[L(6”T, D val)] subject to € total < & max, where L
represents the loss function evaluated on the validation dataset D val after T training rounds. The privacy constraint
requires the cumulative privacy budget across all rounds remain below the maximum allowable threshold &€ max.
Additional constraints include per-round budget limits € t <& round max and smoothness requirements that ensure a
gradual adjustment of allocations throughout training.

The challenge lies in determining allocation schedules without access to future training dynamics. The proposed
approach leverages empirical observations that training exhibits predictable phase transitions from rapid early
convergence to gradual fine-tuning. Privacy budget allocation should concentrate resources during phases in which
additional budget yields the most significant improvement in accuracy per privacy unit expended.

3.2. Dynamic Budget Allocation Strategy Based on Training Rounds
A. Adaptive Noise Scheduling for Training Progression

Early training iterations establish a coarse model structure through large-magnitude gradient updates that determine
general decision boundaries. These initial rounds contribute disproportionately to final model capability, with the first
20% of training rounds typically accounting for 60-70% of total accuracy improvement in computer vision tasks. Privacy
budget allocation should reflect this asymmetric contribution pattern by allocating a higher budget (lower noise) in early
rounds to preserve the integrity of large-magnitude gradient signals crucial for establishing model structure, while
gradually reducing the budget in later stages for fine-tuning within the total privacy constraint.

The proposed noise scale schedule implements this principle as ¢ t=06 max - (1 - exp(-a-t/T)), where ¢ max denotes
the maximum noise scale applied in the final rounds. This schedule applies a lower noise magnitude in early rounds,
resulting in higher privacy budget consumption, ¢ t, when gradients are significant and crucial for establishing the
model structure. As training progresses, the noise magnitude gradually increases (0 t grows), allowing the budget
allocation to decrease for fine-tuning while remaining within the total privacy constraint. As training progresses and
model parameters stabilize, the noise magnitude decreases, while the budget allocation increases to enable fine-tuned
convergence. The decay parameter a controls the steepness of the allocation curve; typical values range from 2.0 to 4.0,
as determined through empirical optimization on benchmark datasets.

Alternative scheduling strategies include stepwise allocation with discrete budget transitions at predetermined
milestones, and adaptive schedules that monitor convergence metrics to trigger allocation adjustments. Stepwise
schedules partition training into distinct phases with corresponding budget allocations, offering implementation
simplicity at the cost of reduced granularity. Convergence-based adaptation evaluates gradient norms or validation
accuracy plateaus to identify phase transitions, enabling data-driven schedule adjustment without manual milestone
specification.

B. Budget Contraction Mechanism During Convergence Phase

When training enters a stable phase with diminishing gradient updates, the model’s sensitivity to noise decreases. This
enables a budget-contraction mechanism that progressively reduces the allocated privacy budget (equivalently, increases
noise injection) in these final rounds. The budget contraction mechanism implements this insight by gradually decreasing
the allocated privacy budget in proportion to measured convergence indicators.

The contraction mechanism monitors the relative change in validation loss AL val = (L _val*t - L val*(t-1))/L_val’\(t-
1) across consecutive rounds. When |AL val| falls below threshold t converge for consecutive rounds (indicating
minimal improvement regardless of direction), the mechanism triggers budget reduction by scaling the current allocation
by contraction factor y < 1.0. Typical parameter values include t converge = 0.001, representing 0.1% relative
improvement threshold, and y = 0.8 for 20% allocation reduction.

Early stopping integration provides additional efficiency by terminating training when further iterations yield negligible
gains in accuracy relative to the privacy cost. The stopping criterion assesses whether the expected accuracy gain from
additional rounds is sufficient to justify the required privacy budget. This cost-benefit analysis compares the marginal
improvement in accuracy, A Acc t, with the remaining privacy budget headroom ( ¢ max- ¢ current) to determine
optimal training termination points.
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Table 1: Round-Based Privacy Budget Allocation Parameters

.. Optimization
Parameter Symbol Value Range Description Method
Base noise . .
Initial Noise Scale Go 0.5-2.0 magnitude for early Grid search with
validation accuracy
rounds
Exponential decay Cross-validation
Decay Rate a 20-49 steepness control across datasets
Convergence Relatlve loss Statistical
Threshold Tconverge) 0.0001 - 0.01 improvement significance testing
detection
Contraction Factor y 07-0.9 Budget reduction Pareto frontier
multiplier optimization
_ . Reserved privacy Empirical risk
Early Stop Margin gargin, 0.1-0.5 budget for minmization
refinement

3.3. Layer-wise Differentiated Budget Allocation Based on Parameter Importance
A. Parameter Importance Evaluation via Fisher Information Matrix

Neural network parameters exhibit heterogeneous sensitivity to perturbations, with specific weights disproportionately
influencing model predictions while others contribute minimally to final accuracy. The Fisher Information Matrix
quantifies the importance of each parameter by measuring the expected squared gradient of the log-likelihood with
respect to that parameter. Parameters with high Fisher information values indicate regions of parameter space in which
small changes substantially affect the model’s output distributions, necessitating stronger privacy protection to prevent
inference attacks.

The Fisher Information Matrix F for parameter vector 0 is computed as F = E x~p(x)[V 6 log p(x|0) - V 0 log p(x|0)
"T]. The diagonal approximation, F diag, simplifies computation by considering only individual parameter importance
scores, without accounting for parameter correlations. This approximation reduces computational complexity from
0O(d"2) to O(d) for d-dimensional parameter space while preserving sufficient information for allocation decisions.

Layer-aggregated importance scores I 1=2% 0O€layer | F_diag(0) / [layer_l| provide coarse-grained metrics suitable for
layer-wise budget allocation. These scores are normalized by layer size to enable fair comparisons across layers with
varying parameter counts. The allocation algorithm assigns privacy budgets proportional to normalized importance
scores, with higher-importance layers receiving larger budgets to maintain prediction accuracy.

B. Low-Noise Strategy for Critical Parameters and High-Noise for Secondary Parameters

The differentiated allocation strategy partitions model parameters into critical and secondary sets based on Fisher
information thresholds. Parameters exceeding the importance threshold I crit are included in the necessary set and thus
receive enhanced privacy protection by reducing noise injection. Secondary parameters with I <1 crit tolerate higher
noise levels with minimal impact on accuracy, enabling privacy budget concentration on critical parameters.

Noise scaling for critical parameters is given by o crit=[3 crit - ¢ base, where  crit < 1.0 reduces noise below baseline
levels. Secondary parameters are provided by ¢ sec =3 sec - ¢ base, with B sec > 1.0, thereby increasing the noise
magnitude. Typical parameter ratios are B crit=0.6 and B sec = 1.4, with the average noise scale 0 base maintained
and the privacy budget redistributed according to parameter importance.

The allocation mechanism recomputes Fisher information scores periodically throughout training to adapt to evolving
parameter importance. Early training phases may identify different critical parameters than convergence phases, as the
model structure stabilizes. Dynamic recomputation frequency balances computational overhead against allocation
accuracy, with typical schedules performing updates every 10-20 communication rounds.
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Table 2: Layer-wise Parameter Importance and Budget Allocation

Fisher

Network Layer Parameter Count Isnct;)rrgnation ?E;fﬁ;fgg él)located Budget %\\I/Icl)lili?plier Scale
g‘g’r‘lﬁoluﬁm 1,728 0.847 0.156 0.65 0.58
Block 1 Conv 36,864 1.243 0.229 0.95 0.62
Block 2 Conv 73,728 0.921 0.170 0.71 0.71
Block 3 Conv 147,456 0.634 0.117 0.49 0.89
Block 4 Conv 294,912 0.512 0.094 0.39 1.12
Attention Layer 65,536 1.568 0.289 1.20 0.51
Fully Connected 20,480 0.789 0.145 0.61 0.75

Note: The ‘Allocated Budget ()’ values in Table 2 represent relative allocation weights across layers. The actual
per-round budget ¢ t is distributed proportionally to these weights, ensuring the cumulative budget over all rounds
satisfies € total = 3.50.

Figure 1: Adaptive Privacy Budget Allocation Dynamics Across Training Progression
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The visualization consists of three vertically stacked subplots sharing a common x-axis representing training rounds (0-
200). The top subplot displays the allocated privacy budget per round using a gradient-filled area chart, transitioning
from deep blue in the early rounds to light cyan in the later rounds, with the y-axis ranging from 0 to 0.08 (¢ per round).
A dashed reference horizontal line at 0.04 indicates the uniform allocation baseline. The middle subplot presents
cumulative privacy budget consumption, with three overlapping curves: exponential decay allocation (solid blue),
uniform allocation (dashed orange), and adaptive allocation (dash-dot green), and the y-axis ranges from 0 to 4.0
(cumulative €). The bottom subplot shows validation accuracy evolution for all three strategies using matching line styles
and colors, with the y-axis from 0.60 to 0.94 (accuracy). Vertical dashed gray lines mark phase transitions at rounds 40,
100, and 160, annotated with "Rapid Convergence," "Refinement," and "Stabilization" labels. The figure includes a
shared legend positioned at the bottom center and uses Helvetica font for all text elements with 10pt labels and 12pt axis
titles.

Figure 2: Fisher Information-Based Parameter Importance Heatmap and Allocation Distribution
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This visualization employs a 2x1 grid layout. The left panel presents a heatmap matrix (28 rows x 12 columns)
representing neural network layer parameters, with color intensity encoded using a perceptually uniform viridis colormap
ranging from purple (low importance, 0.0) to yellow (high importance, 2.5). Each cell represents a parameter group
within a layer, with row labels on the y-axis indicating layer names (Convl, Conv2, ..., Block4, Attention, FC1, FC2)
and column labels on the x-axis showing parameter group indices (0-11). A colorbar positioned to the right of the
heatmap provides the Fisher Information magnitude scale. The right panel displays a horizontal bar chart showing the
allocated privacy budget per layer, with bars colored using the same viridis colormap mapped to each layer's mean Fisher
information. Bar lengths represent budget values ranging from 0 to 1.4 ¢, with the numerical values displayed at the
bar ends in white text. The y-axis lists layer names matching the heatmap rows, and the x-axis is labeled "Allocated
Budget (¢)". Both panels use consistent typography: Arial, 11pt, for labels, and a figure title centered at the top in a bold,
14pt font.

4. Experimental Design and Performance Evaluation

4.1. Experimental Environment and Dataset Configuration

A. Simulation Platform and Fleet Scale Settings

The experimental infrastructure leverages the Flower federated learning framework, integrated with PyTorch 2.0, for
model training and the Opacus library for differential privacy. The simulation runs on a cluster of 8 NVIDIA A100 GPUs
with 40GB of memory each, enabling parallel training of up to 64 simulated vehicle nodes per experimental run. Each
node emulates the computational capacity of typical automotive edge computing hardware, with CPU resources limited
to 4 cores and 8GB RAM to reflect realistic deployment constraints.
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Fleet-scale configurations vary across experimental scenarios to evaluate scalability properties. Small fleet experiments
involve 20-30 participating vehicles representing localized deployment in urban regions. Medium fleet scenarios
simulate 50-100 cars corresponding to city-scale operations across metropolitan areas. Large fleet configurations range
from 200 to 300 vehicles and model regional or national fleet deployments with diverse geographic and operational
characteristics. Node participation follows a Poisson arrival process with a mean availability of 70%, thereby simulating
realistic network connectivity patterns in vehicular environments.

Communication protocols implement gradient compression via top 10% sparsification to reduce bandwidth
consumption, a critical consideration for cellular network-based vehicle connectivity. Synchronous aggregation employs
a minimum participation threshold of 60% to ensure sufficient gradient information per round while accommodating
fluctuations in node availability. Asynchronous aggregation variants explore staleness-bounded aggregation accepting
gradients up to 5 rounds old, improving training throughput at the cost of convergence speed.

B. Dataset Partitioning and Non-IID Simulation Methods

The primary evaluation uses the nuScenes autonomous driving dataset, which contains 1.4 million annotated 3D
bounding boxes across 1000 driving scenarios in Boston and Singapore. The dataset provides multimodal sensor data,
including camera images, LiDAR point clouds, and GPS trajectories, suitable for training perception models. Secondary
evaluation uses FEMNIST, a federated version of the EMNIST handwritten character recognition dataset partitioned by
writer identity, providing 100 clients with 671,585 total samples for non-IID heterogeneity analysis.

Non-IID data distribution simulates realistic fleet heterogeneity through geographic and demographic partitioning
strategies. Geographic non-IID sampling allocates samples to vehicle nodes based on spatial clustering, with vehicles
operating in similar regions receiving correlated data samples that reflect local traffic patterns and environmental
conditions. Demographic non-IID partitions data according to vehicle type, usage pattern, or operator demographics to
model systematic differences in driving behavior across fleet segments.

Label distribution skew quantification employs the Dirichlet distribution, with concentration parameter a controlling
the magnitude of heterogeneity. Lower o values near 0.1 result in extreme label imbalance, with individual nodes
exhibiting highly skewed class distributions, whereas higher values near 1.0 produce more balanced distributions.
Feature distribution skew introduces covariate shift by systematically modifying input data statistics across nodes,
simulating sensor calibration differences or environmental variation.

Table 3: Experimental Dataset Configuration and Partitioning Statistics

Class

Total Number of Samples per c e Feature

Dataset Samples Clients Client Distribution Heterogeneity Task Type
Skew (0)

nuScenes- 28,000 + 0.3 (high Geographic .
Objects 1,400,000 50 6.200 skew) clustering 3D Detection
nuScenes- 16,000 + 0.5 (moderate  Scene-based .
Semantic 800,000 >0 4,100 skew) variation Segmentation
FEMNIST- 671 585 100 6,716+3,802 /A (natural  Handwriting o, qification
Writer writer) style
CIFAR-10- 50,000 30 1,667 = 450 0.4 (high Synthetic Image
Fleet skew) corruption Recognition

4.2. Evaluation Metrics System Design

Performance evaluation employs a comprehensive metric suite capturing multiple dimensions of privacy-utility-
efficiency tradeoffs. Model accuracy metrics include top-1 and top-5 classification accuracies for FEMNIST experiments
and mean Average Precision (mAP) computed using COCO-style evaluation with IoU thresholds from 0.5 to 0.95. For
clarity, this differs from the official nuScenes detection benchmark metric (NDS), and our reported mAP is used for
internal comparisons of privacy strategies and Intersection over Union (IoU) scores in semantic segmentation evaluation.
These metrics quantify the primary utility objective of federated learning: achieving high-quality model performance on
downstream tasks.
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Privacy protection quantification tracks cumulative privacy budget consumption measured in (g, 6)-differential privacy
parameters. Experiments report the total ¢ accumulated across all training rounds, the per-round budget allocation ¢

t, and the residual privacy budget ¢ residual at the end of training. Privacy accounting employs Rényi differential
privacy with optimal conversion to (g, ) using the publicly available autodp library to minimize accounting
conservatism. Comparison benchmarks include uniform allocation (constant € t across all rounds) and proportional
allocation (&_t proportional to gradient norms).

Convergence efficiency metrics measure the number of training rounds required to reach target accuracy thresholds,
wall-clock training time accounting for computation and communication overhead, and total communication volume in
bytes transmitted across all participants. Communication efficiency is of substantial importance in vehicular networks,
given bandwidth constraints and cellular data costs. Additional metrics include node utilization rates, which measure
effective participation across intermittently available vehicles, and fairness indices, which quantify performance variance
across client subpopulations.

Table 4: Comparative Performance Across Privacy Budget Allocation Strategies

Allocation Final mAP Convergence Total Budget Comm. Training Worst-Client

Strategy (%) Rounds (e) Volume (GB) Time (hrs) mAP (%)

gmfo.ml 723+1.8 185 3.50 472 8.6 64.7
aseline

gradleﬂ.t' 74.6+ 1.4 172 3.50 43.9 8.1 66.2
roportional

Round-

Adaptive 782+ 1.1 156 3.50 39.8 7.2 70.4

(Proposed)

Layer-

Adaptive 79.1+0.9 163 3.50 41.2 7.6 71.8

(Proposed)

Combined 81.0+0.7 142 3.50 36.1 6.6 73.5

Adaptive

No  Privacy ¢g 4403 08 N/A 253 45 87.1

(Oracle)

4.3. Experimental Results and Comparative Analysis
A. Privacy-Accuracy Tradeoff Performance Comparison

Experimental results demonstrate substantial improvements in accuracy with adaptive privacy budget allocation
compared with uniform baselines. The combined adaptive strategy, which incorporates both round-based and layer-wise
allocation, achieves 81.0% mAP on nuScenes object detection, representing an 8.7 percentage-point improvement over
the 72.3% mAP baseline with an equivalent total privacy budget, €=3.50. This improvement narrows the privacy-induced
accuracy gap from 17.1 points to 8.4 points relative to the non-private oracle model at 89.4% mAP.

Breaking down contributions from individual adaptation mechanisms reveals complementary benefits. Round-based
adaptive allocation alone improves accuracy to 78.2% mAP by efficiently distributing the budget to early training phases,
when gradients carry maximal learning signal. Layer-wise Fisher information-based allocation achieves 79.1% mAP by
protecting critical parameters in attention layers and early convolutional blocks while allowing higher noise injection in
later layers with reduced importance.

The combination of the two mechanisms produces synergistic effects that exceed the additive effects of the individual
strategies. Round-based allocation provides temporal optimization across the training process, whereas layer-wise
allocation optimizes spatial distribution across the model architecture. This dual optimization addresses both dimensions
of budget allocation, accounting for the observed super-additive performance gains when mechanisms operate in concert.
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Worst-client accuracy metrics assess fairness and robustness across heterogeneous vehicle nodes. Adaptive allocation
improves worst-client mAP from 64.7% to 73.5%, an 8.8-point improvement, reducing performance disparity across the
fleet. This fairness enhancement arises from the superior convergence properties of adaptive allocation, which
disproportionately benefit data-poor clients by improving global model quality.

B. Convergence Speed and Communication Efficiency Evaluation

Convergence analysis reveals that adaptive allocation achieves the target accuracy with 23.2% fewer communication
rounds than uniform baselines. The combined adaptive strategy requires 142 rounds to reach 80% mAP, whereas uniform
allocation requires 185 rounds to achieve 72.3% mAP, falling short of the target even with additional training. This
accelerated convergence directly translates into reduced communication volume, with adaptive allocation consuming
36.1 GB versus 47.2 GB for uniform allocation, representing a 23.4% reduction in bandwidth.

Training-time measurements account for both computational and communication overhead under realistic network
conditions. Adaptive allocation completes training in 6.6 hours, compared with 8.6 hours for uniform allocation, a 23.3%
reduction in training time. This efficiency gain compounds the accuracy improvement, delivering superior models in
less time with lower communication costs—the synchronized improvement across multiple efficiency dimensions
positions adaptive allocation as particularly valuable for resource-constrained vehicular deployments.

Ablation studies isolate individual mechanism contributions to overall performance. Removing the round-based
adaptation component while retaining layer-wise allocation increases the number of convergence rounds from 142 to
163, demonstrating the substantial contribution of round-based adaptation to training efficiency. Conversely, removing
layer-wise allocation while maintaining round-based mechanisms increases the number of rounds from 142 to 156,
indicating that layer-wise optimization yields comparable but slightly smaller efficiency gains.

Scalability analysis evaluates performance across varying fleet sizes from 20 to 300 vehicles. Accuracy improvements
from adaptive allocation remain consistent across scales, with 8.5-9.2 percentage point gains observed regardless of fleet
size. Communication efficiency gains increase with fleet scale, reaching a 27.1% bandwidth reduction in 300-vehicle
scenarios, owing to improved gradient diversity, which enables faster convergence. These results confirm the robustness
of adaptive allocation across realistic deployment scales.

Table 5: Sensitivity Analysis of Key Hyperparameters

. Total . e .
Final mAP Convergence Optimal Sensitivity
Parameter Value Range (%) Rounds ?al)ldget Setting Ranking
778, 7192
15, 20, 25, (TS O [154, 148, 144, 142 .
Decay Rate (o) 431_(5)1 3.5, 4.0, ggg% 79-9: 143”147”152]’ > 3.50 3.0 High
(782, 798,
mitial  Noise L= P2+ 0% 8077 81.0] [151,146,143,142, 5 Lo Hioh
(00) o LS LD 804 79.1, 144,149, 156] : : g
2.0]
: 77.3]
y 794, 802
Critical (04, 05, 0.6, L% * (147, 144, 142, 143, .
Param(Brity  0.7,08,09] 559 9]80'6’ 146, 150] 3.50 0.6 Medium
Fisher Update [5, 10, 15, 20, %%0'98’ g(l).g, [143,142, 142,144, 5 o 1015 Low
Freq 25, 30] S01 705 O 147.151] :
0.0001 [80.4,  80.8
Convergence ; ’ » (145, 143, 142, 146,
T e 0.0005, 0.001, 810, 805, (i 3.50 0.001 Low

0.005, 0.01] 79.9]

Artificial Intelligence and Machine Learning Review [ISSN: 3070-3565]
25



Figure 3: Multi-Dimensional Performance Visualization: Accuracy, Privacy, and Efficiency Tradeoffs
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This comprehensive visualization employs a 2x2 subplot grid with shared styling. The top-left panel displays a 3D
surface plot with the x-axis representing the privacy budget ( € , from 1.0 to 6.0), the y-axis showing the number of
training rounds (50 to 250), and the z-axis indicating model accuracy (0.60 to 0.90). The surface uses a continuous cool-
warm colormap with adaptive allocation strategy rendered in blue-purple tones and uniform allocation in orange-red
tones. The top-right panel presents a scatter plot comparing privacy budget (x-axis, 1.5 to 5.0 €) versus final mAP (y-
axis, 0.65 to 0.85), with point sizes proportional to communication volume (20-60 GB range) and colors indicating
allocation strategies (adaptive in green, uniform in red, gradient-proportional in blue). Each point is accompanied by
error bars showing +1 standard deviation across 5 experimental runs. The bottom-left panel shows a stacked area chart
depicting cumulative resource consumption across training rounds (x-axis, 0-200), with three stacked components:
computation time (purple), communication time (orange), and idle waiting time (gray), comparing adaptive versus
uniform strategies. The bottom-right panel displays a radar chart with six axes representing normalized metrics:
accuracy, convergence speed, communication efficiency, fairness, robustness, and privacy preservation, with adaptive
allocation (solid blue polygon) and uniform allocation (dashed red polygon) overlaid for direct comparison. All subplots
use 11pt Roboto for labels, include gridlines for readability, and share a common figure title in bold 16pt font at the top
center.

5. Conclusion and Future Work

5.1. Research Summary and Main Contributions

This research addresses the fundamental challenge of balancing privacy protection with model performance in fleet
federated learning through adaptive privacy budget allocation mechanisms. The proposed framework integrates two
complementary optimization strategies: round-based dynamic allocation that concentrates privacy resources during
critical early training phases, and layer-wise differentiated allocation that protects parameters according to Fisher
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information-based importance scores. Experimental validation demonstrates that these mechanisms achieve 8.7% higher
model accuracy than uniform allocation baselines while maintaining equivalent privacy guarantees at ¢ =3.5, and
simultaneously improve communication efficiency by 23.4% through accelerated convergence.

The technical contributions establish a principled methodology for privacy budget management that adapts to training
dynamics rather than applying static allocation schedules. Round-based allocation implements exponential decay
scheduling with convergence-triggered contraction mechanisms, thereby optimizing the temporal budget distribution
across the training progression. Layer-wise allocation leverages Fisher Information Matrix computation to identify
critical parameters that require concentrated protection, enabling higher noise injection in secondary parameters without
degrading accuracy. The combination of these mechanisms provides robust performance across varying fleet sizes, levels
of dataset heterogeneity, and privacy budget constraints.

Practical deployment considerations include computational overhead for Fisher information computation and the
complexity of privacy accounting in adaptive allocation schemes. The Fisher information computation adds
approximately 8-12% computational overhead during periodic update phases, a manageable cost given the substantial
accuracy and efficiency improvements. Privacy accounting for adaptive allocation employs Rényi differential privacy
mechanisms that maintain tight privacy loss bounds while accommodating dynamic noise schedules. Implementation
guidance specifies optimal hyperparameter configurations derived from extensive sensitivity analysis across multiple
datasets and deployment scales.

The research provides empirical evidence that adaptive privacy budget allocation is a practical pathway for fleet
operators to implement privacy-preserving collaborative learning systems that meet regulatory requirements while
optimizing operational performance metrics. The demonstrated accuracy improvements and efficiency gains position
federated learning as a viable approach for autonomous vehicle data utilization without the risks of centralized data
collection. Fleet-scale validation confirms the approach's robustness across realistic deployment scenarios, including
heterogeneous vehicle nodes, intermittent network connectivity, and diverse geographic operating environments.

5.2. Limitations Analysis and Future Research Directions

Current limitations include reliance on centralized aggregation architectures, which introduce single points of failure and
trust requirements, motivating future work on decentralized aggregation protocols compatible with adaptive privacy
budget allocation. Peer-to-peer aggregation topologies eliminate central coordinators but introduce challenges for
privacy accounting across multi-hop gradient propagation. Blockchain-based coordination mechanisms offer potential
solutions through distributed consensus on allocation schedules and verifiable privacy budget tracking.

The experimental evaluation focuses primarily on computer vision tasks for autonomous vehicle perception, leaving
open questions regarding generalization to other vehicular applications such as predictive maintenance, energy
optimization, or route planning. Different application domains may exhibit distinct training dynamics requiring
customized allocation strategies. Future research should evaluate adaptive allocation across broader task categories to
establish domain-specific configuration guidelines and identify universal optimization principles transferable across
applications.

Theoretical analysis of convergence guarantees for adaptive allocation schemes remains incomplete, particularly for
non-convex optimization landscapes characteristic of deep neural networks. Existing convergence proofs for
differentially private federated learning assume constant noise schedules, which are incompatible with adaptive
allocation. Developing formal convergence analysis for time-varying noise schedules constitutes a significant theoretical
contribution that would strengthen confidence in the reliability of adaptive allocation. Worst-case convergence bounds
under adversarial adaptive allocation policies would provide robustness guarantees.

The intersection of adaptive privacy allocation and Byzantine fault-tolerance mechanisms warrants further investigation.
Current Byzantine-robust aggregation methods, such as Krum or trimmed mean, operate independently of privacy
considerations, potentially creating conflicts when Byzantine detection relies on gradient magnitude patterns obscured
by privacy noise. Co-designing privacy and robustness mechanisms could yield synergistic improvements, with privacy
budget allocation informed by Byzantine threat models and Byzantine detection adapted to expected privacy noise
distributions. This integrated approach would provide comprehensive security guarantees that encompass both
confidentiality and integrity.
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