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 Federated learning in fleets faces critical challenges in balancing privacy 
protection with model performance when processing sensitive vehicular data. 
Traditional fixed privacy budget allocation strategies fail to account for the 
dynamic nature of distributed training across heterogeneous vehicle nodes. 
This research proposes an adaptive privacy budget allocation mechanism that 
dynamically adjusts differential privacy parameters based on training 
progression and parameter importance. The methodology integrates Fisher 
Information Matrix evaluation for layer-wise budget distribution and 
implements a round-based allocation strategy that concentrates privacy 
resources during critical learning phases. Experimental validation on the 
nuScenes and FEMNIST datasets demonstrates that the adaptive approach 
achieves 8.7% higher model accuracy than uniform budget allocation while 
maintaining equivalent privacy guarantees at ε=3.5. Communication efficiency 
is improved by 23.4% by reducing the number of convergence rounds. The 
framework provides fleet operators with practical guidance for implementing 
privacy-preserving collaborative learning systems that meet regulatory 
requirements while optimizing operational performance metrics. 

1. Introduction

1.1. Research Background and Problem Statement 

The proliferation of autonomous vehicle technologies has generated unprecedented volumes of sensitive operational data 
requiring collaborative analysis while preserving individual privacy. Fleet operators accumulate diverse datasets 
encompassing location trajectories, driving patterns, and environmental sensor readings that collectively enable 
enhanced autonomous capabilities [1]. Privacy-preserving collaborative learning frameworks have emerged as essential 
infrastructure for leveraging distributed vehicular data without centralized collection. Differential privacy mechanisms 
provide mathematical guarantees against privacy leakage during model training aggregation processes [2]. 

Current implementations predominantly employ static privacy budget allocation schemes that apply uniform noise 
addition across all training iterations and model parameters [3]. This approach introduces several operational 
inefficiencies, which are particularly problematic in resource-constrained vehicular computing environments. Fixed-
budget strategies fail to account for the fact that model parameters exhibit varying sensitivity to privacy perturbations 
throughout training. Early training phases require sufficient gradient information for directional convergence, while later 
stages benefit from noise reduction to achieve optimal performance [4]. 

The heterogeneous nature of fleet participation patterns further complicates privacy budget management. Vehicle nodes 
demonstrate irregular availability due to operational schedules, network connectivity variations, and computational 
resource fluctuations. Static allocation mechanisms cannot adapt to these dynamic participation patterns, resulting in 
either excessive privacy degradation or unnecessary sacrifices in model accuracy [5]. Cross-border fleet operations 
introduce additional complexity through varying regulatory requirements and threat models across jurisdictions. 

Recent advances in adaptive learning rate scheduling and parameter-specific optimization strategies suggest potential 
for analogous approaches in privacy budget allocation [6]. Machine learning workflows increasingly incorporate dynamic 
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resource management based on assessments of training state and parameter importance metrics. Transferring these 
principles to differential privacy frameworks could enable more efficient privacy-utility tradeoffs specifically tailored 
for vehicular federated learning scenarios [7]. 

1.2. Current Status and Challenges 

A. Progress in Privacy-Preserving Fleet Federated Learning 

Academic and industrial research has established foundational architectures for privacy-preserving vehicular 
collaborative learning. Secure aggregation protocols provide cryptographic protection for individual model updates 
during aggregation phases without revealing participants’ contributions [8]. Homomorphic encryption techniques support 
computations on encrypted gradients, providing theoretical privacy guarantees at substantial computational costs. Recent 
deployments on ride-sharing platforms and in autonomous-vehicle testing programs demonstrate the practical feasibility 
of federated learning for transportation applications. 

Regulatory frameworks increasingly mandate the protection of privacy in location-based services and autonomous-
vehicle data collection. The General Data Protection Regulation and California Consumer Privacy Act establish legal 
requirements for data minimization and purpose limitation. Transportation-sector-specific guidelines from agencies, 
including the National Highway Traffic Safety Administration, emphasize privacy-by-design principles for connected-
vehicle systems [9]. These regulatory pressures accelerate the adoption of mathematically provable privacy mechanisms 
such as differential privacy. 

B. Limitations of Existing Privacy Budget Allocation Methods 

Contemporary privacy budget allocation strategies predominantly follow two paradigms: uniform distribution across 
training rounds or proportional allocation based on dataset size. Uniform allocation assigns the same privacy budget to 
each communication round, regardless of training dynamics or model convergence. This approach simplifies 
implementation and theoretical analysis but ignores the empirical observation that gradient magnitudes and parameter 
sensitivities evolve substantially throughout training [10]. 

Dataset-proportional allocation scales privacy budgets according to local dataset sizes, assuming that larger datasets 
contain more information and therefore require stronger privacy protection. This method addresses fairness concerns in 
heterogeneous data distribution scenarios but fails to account for temporal training dynamics [11]. Both approaches treat 
all model parameters equally, despite clear evidence that different layers contribute differently to final model 
performance [12]. 

2. Related Work 

2.1. Differential Privacy Techniques in Federated Learning 

A. Global Differential Privacy vs. Local Differential Privacy 

Differential privacy frameworks for federated learning can be classified into global and local privacy models, with 
distinct trust assumptions and performance characteristics. Global differential privacy applies noise addition at the 
central aggregator after collecting participant updates, requiring trust in the aggregation server but enabling tighter 
privacy-utility tradeoffs. Local differential privacy requires each participant to add noise to their model updates before 
transmission, eliminating centralized trust requirements at the cost of higher noise magnitudes for equivalent privacy 
guarantees. 

The mathematical formulation of (ε, δ)-differential privacy establishes that for any two neighboring datasets differing 
by one record, the probability of observing any output differs by at most a multiplicative factor of e^ε plus additive δ. 
The privacy budget parameter ε quantifies the privacy loss; smaller values provide stronger guarantees but require 
proportionally larger noise additions. The composition theorem governs the accumulation of privacy budgets across 
multiple queries or training iterations, necessitating careful budget management over extended training periods. 

B. Privacy Budget Management and Moments Accountant 

Advanced accounting mechanisms enable more precise privacy budget tracking compared to naive composition bounds. 
The Moments Accountant framework, developed for differentially private stochastic gradient descent, yields tighter 
privacy-loss bounds by analyzing the moment-generating function of the privacy-loss random variable. This approach 
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reduces conservatism in privacy accounting, thereby enabling longer training durations for equivalent privacy guarantees 
compared with elemental composition. 

Rényi differential privacy offers an alternative formulation that simplifies composition analysis through additive 
properties of Rényi divergence. Recent theoretical work establishes connections among different privacy accounting 
frameworks and derives optimal conversion bounds. These advances enable practitioners to select appropriate accounting 
mechanisms based on specific deployment constraints and desired privacy-utility operating points. 

2.2. Characteristics Analysis of Federated Learning in Fleet Scenarios 

Fleet federated learning exhibits characteristics that distinguish it from conventional federated learning deployments. 
Vehicle nodes operate under strict computational and energy constraints due to embedded-system limitations and battery 
constraints. Network connectivity varies substantially across geographic regions and operational contexts, with vehicles 
experiencing intermittent connectivity during travel. These resource constraints necessitate communication-efficient 
protocols that minimize both data transmission volume and the frequency of communication rounds [13]. 

Data heterogeneity in vehicular scenarios extends beyond simple non-IID distributions observed in mobile device 
federations. Geographic and demographic factors produce systematic variation in driving patterns, traffic conditions, and 
environmental contexts among fleet participants. Temporal dynamics introduce additional complexity, as individual 
vehicle usage patterns evolve over timescales ranging from diurnal cycles to seasonal variations. Standard federated 
optimization algorithms designed for IID data distributions exhibit degraded convergence properties and reduced model 
quality when applied to vehicular data. 

Security threats specific to vehicular networks include malicious participants attempting to poison model training 
through adversarial updates. Byzantine fault tolerance mechanisms must operate in concert with privacy protection to 
ensure both data confidentiality and model integrity. The intersection of privacy preservation and robustness poses 
particular challenges, as differential privacy noise can obscure the detection of Byzantine attacks. 

2.3. Survey of Adaptive Privacy Budget Allocation Methods 

Emerging research explores dynamic privacy budget allocation strategies that adjust noise levels based on indicators of 
the training state. Gradient-norm-based approaches scale noise addition inversely proportional to gradient magnitude, 
thereby concentrating privacy budgets when gradients carry maximal learning signal. This heuristic aligns with empirical 
observations that early training iterations with large gradients tolerate less noise before accuracy degradation occurs. 

Layer-wise differentiated allocation strategies assign varying privacy budgets to different neural network layers based 
on parameter importance metrics. Sensitivity analysis using the Fisher information matrix identifies the parameters with 
the greatest impact on model predictions, enabling selective protection of critical parameters. Alternative approaches 
employ neural architecture search techniques to automatically discover privacy-optimal subnetworks that require 
concentrated protection [14]. 

Reinforcement learning frameworks treat privacy budget allocation as a sequential decision problem, training policy 
networks to optimize allocation decisions based on observed training dynamics. These adaptive methods demonstrate 
improved privacy-utility tradeoffs compared to static baselines but introduce implementation complexity and 
hyperparameter sensitivity challenges. Theoretical analysis of convergence guarantees for adaptive allocation schemes 
remains an active research area with limited formal results [15]. 

3. Adaptive Privacy Budget Allocation Algorithm Optimization 

3.1. Problem Formulation and Optimization Objectives 

The fleet federated learning system comprises N vehicle nodes, each maintaining a local dataset D_i with |D_i| samples. 
The central aggregation server coordinates T communication rounds without accessing raw participant data. Each vehicle 
i computes local model updates θ_i^t at round t through gradient descent on its private dataset. The aggregation 
mechanism combines these updates to produce the global model θ^(t+1) . 

Differential privacy protection adds calibrated noise to model updates before aggregation. The privacy budget allocation 
problem seeks to determine optimal noise-scaling parameters σ_t for each round t and, potentially, layer-specific 
parameters σ_t^l for neural network layer l. The optimization objective balances three competing factors: minimizing 
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the total privacy budget consumed (Σ_t ε_t ≤ ε_total), maximizing final model accuracy on held-out validation data, 
and minimizing the number of communication rounds required for convergence. 

Formally, the optimization problem is expressed as: minimize E[L(θ^T, D_val)] subject to ε_total ≤ ε_max, where L 
represents the loss function evaluated on the validation dataset D_val after T training rounds. The privacy constraint 
requires the cumulative privacy budget across all rounds remain below the maximum allowable threshold ε_max. 
Additional constraints include per-round budget limits ε_t ≤ ε_round_max and smoothness requirements that ensure a 
gradual adjustment of allocations throughout training. 

The challenge lies in determining allocation schedules without access to future training dynamics. The proposed 
approach leverages empirical observations that training exhibits predictable phase transitions from rapid early 
convergence to gradual fine-tuning. Privacy budget allocation should concentrate resources during phases in which 
additional budget yields the most significant improvement in accuracy per privacy unit expended. 

3.2. Dynamic Budget Allocation Strategy Based on Training Rounds 

A. Adaptive Noise Scheduling for Training Progression 

Early training iterations establish a coarse model structure through large-magnitude gradient updates that determine 
general decision boundaries. These initial rounds contribute disproportionately to final model capability, with the first 
20% of training rounds typically accounting for 60-70% of total accuracy improvement in computer vision tasks. Privacy 
budget allocation should reflect this asymmetric contribution pattern by allocating a higher budget (lower noise) in early 
rounds to preserve the integrity of large-magnitude gradient signals crucial for establishing model structure, while 
gradually reducing the budget in later stages for fine-tuning within the total privacy constraint. 

The proposed noise scale schedule implements this principle as σ_t = σ_max · (1 - exp(-α·t/T))， where σ_max denotes 
the maximum noise scale applied in the final rounds. This schedule applies a lower noise magnitude in early rounds, 
resulting in higher privacy budget consumption, ε_t , when gradients are significant and crucial for establishing the 
model structure. As training progresses, the noise magnitude gradually increases (σ_t grows), allowing the budget 
allocation to decrease for fine-tuning while remaining within the total privacy constraint. As training progresses and 
model parameters stabilize, the noise magnitude decreases, while the budget allocation increases to enable fine-tuned 
convergence. The decay parameter α controls the steepness of the allocation curve; typical values range from 2.0 to 4.0, 
as determined through empirical optimization on benchmark datasets. 

Alternative scheduling strategies include stepwise allocation with discrete budget transitions at predetermined 
milestones, and adaptive schedules that monitor convergence metrics to trigger allocation adjustments. Stepwise 
schedules partition training into distinct phases with corresponding budget allocations, offering implementation 
simplicity at the cost of reduced granularity. Convergence-based adaptation evaluates gradient norms or validation 
accuracy plateaus to identify phase transitions, enabling data-driven schedule adjustment without manual milestone 
specification. 

B. Budget Contraction Mechanism During Convergence Phase 

When training enters a stable phase with diminishing gradient updates, the model’s sensitivity to noise decreases. This 
enables a budget-contraction mechanism that progressively reduces the allocated privacy budget (equivalently, increases 
noise injection) in these final rounds. The budget contraction mechanism implements this insight by gradually decreasing 
the allocated privacy budget in proportion to measured convergence indicators. 

The contraction mechanism monitors the relative change in validation loss ΔL_val = (L_val^t - L_val^(t-1))/L_val^(t-
1) across consecutive rounds. When |ΔL_val| falls below threshold τ_converge for consecutive rounds (indicating 
minimal improvement regardless of direction), the mechanism triggers budget reduction by scaling the current allocation 
by contraction factor γ < 1.0. Typical parameter values include τ_converge = 0.001, representing 0.1% relative 
improvement threshold, and γ = 0.8 for 20% allocation reduction. 

Early stopping integration provides additional efficiency by terminating training when further iterations yield negligible 
gains in accuracy relative to the privacy cost. The stopping criterion assesses whether the expected accuracy gain from 
additional rounds is sufficient to justify the required privacy budget. This cost-benefit analysis compares the marginal 
improvement in accuracy, ΔAcc_t, with the remaining privacy budget headroom (ε_max- ε_current) to determine 
optimal training termination points. 
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Table 1: Round-Based Privacy Budget Allocation Parameters 

Parameter Symbol Value Range Description 
Optimization 
Method 

Initial Noise Scale σ₀ 0.5 - 2.0 
Base noise 
magnitude for early 
rounds 

Grid search with 
validation accuracy 

Decay Rate α 2.0 - 4.0 
Exponential decay 
steepness control 

Cross-validation 
across datasets 

Convergence 
Threshold 

τ₍converge₎ 0.0001 - 0.01 
Relative loss 
improvement 
detection 

Statistical 
significance testing 

Contraction Factor γ 0.7 - 0.9 
Budget reduction 
multiplier 

Pareto frontier 
optimization 

Early Stop Margin ε₍margin₎ 0.1 - 0.5 
Reserved privacy 
budget for 
refinement 

Empirical risk 
minimization 

3.3. Layer-wise Differentiated Budget Allocation Based on Parameter Importance 

A. Parameter Importance Evaluation via Fisher Information Matrix 

Neural network parameters exhibit heterogeneous sensitivity to perturbations, with specific weights disproportionately 
influencing model predictions while others contribute minimally to final accuracy. The Fisher Information Matrix 
quantifies the importance of each parameter by measuring the expected squared gradient of the log-likelihood with 
respect to that parameter. Parameters with high Fisher information values indicate regions of parameter space in which 
small changes substantially affect the model’s output distributions, necessitating stronger privacy protection to prevent 
inference attacks. 

The Fisher Information Matrix F for parameter vector θ is computed as F = E_x~p(x)[∇_θ log p(x|θ) · ∇_θ log p(x|θ) 
^T]. The diagonal approximation, F_diag, simplifies computation by considering only individual parameter importance 
scores, without accounting for parameter correlations. This approximation reduces computational complexity from 
O(d^2) to O(d) for d-dimensional parameter space while preserving sufficient information for allocation decisions. 

Layer-aggregated importance scores I_l = Σ_θ∈layer_l F_diag(θ) / |layer_l| provide coarse-grained metrics suitable for 
layer-wise budget allocation. These scores are normalized by layer size to enable fair comparisons across layers with 
varying parameter counts. The allocation algorithm assigns privacy budgets proportional to normalized importance 
scores, with higher-importance layers receiving larger budgets to maintain prediction accuracy. 

B. Low-Noise Strategy for Critical Parameters and High-Noise for Secondary Parameters 

The differentiated allocation strategy partitions model parameters into critical and secondary sets based on Fisher 
information thresholds. Parameters exceeding the importance threshold I_crit are included in the necessary set and thus 
receive enhanced privacy protection by reducing noise injection. Secondary parameters with I < I_crit tolerate higher 
noise levels with minimal impact on accuracy, enabling privacy budget concentration on critical parameters. 

Noise scaling for critical parameters is given by σ_crit = β_crit · σ_base, where β_crit < 1.0 reduces noise below baseline 
levels. Secondary parameters are provided by σ_sec = β_sec · σ_base, with β_sec > 1.0, thereby increasing the noise 
magnitude. Typical parameter ratios are β_crit = 0.6 and β_sec = 1.4, with the average noise scale σ_base maintained 
and the privacy budget redistributed according to parameter importance. 

The allocation mechanism recomputes Fisher information scores periodically throughout training to adapt to evolving 
parameter importance. Early training phases may identify different critical parameters than convergence phases, as the 
model structure stabilizes. Dynamic recomputation frequency balances computational overhead against allocation 
accuracy, with typical schedules performing updates every 10-20 communication rounds. 
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Table 2: Layer-wise Parameter Importance and Budget Allocation 

Network Layer Parameter Count 
Fisher 
Information 
Score 

Normalized 
Importance 

Allocated Budget 
(ε) 

Noise Scale 
Multiplier 

Input 
Convolution 

1,728 0.847 0.156 0.65 0.58 

Block 1 Conv 36,864 1.243 0.229 0.95 0.62 

Block 2 Conv 73,728 0.921 0.170 0.71 0.71 

Block 3 Conv 147,456 0.634 0.117 0.49 0.89 

Block 4 Conv 294,912 0.512 0.094 0.39 1.12 

Attention Layer 65,536 1.568 0.289 1.20 0.51 

Fully Connected 20,480 0.789 0.145 0.61 0.75 

Note: The ‘Allocated Budget (ε)’ values in Table 2 represent relative allocation weights across layers. The actual 
per-round budget ε_t is distributed proportionally to these weights, ensuring the cumulative budget over all rounds 
satisfies ε_total = 3.50. 

Figure 1: Adaptive Privacy Budget Allocation Dynamics Across Training Progression 
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The visualization consists of three vertically stacked subplots sharing a common x-axis representing training rounds (0-
200). The top subplot displays the allocated privacy budget per round using a gradient-filled area chart, transitioning 
from deep blue in the early rounds to light cyan in the later rounds, with the y-axis ranging from 0 to 0.08 (ε per round). 
A dashed reference horizontal line at 0.04 indicates the uniform allocation baseline. The middle subplot presents 
cumulative privacy budget consumption, with three overlapping curves: exponential decay allocation (solid blue), 
uniform allocation (dashed orange), and adaptive allocation (dash-dot green), and the y-axis ranges from 0 to 4.0 
(cumulative ε). The bottom subplot shows validation accuracy evolution for all three strategies using matching line styles 
and colors, with the y-axis from 0.60 to 0.94 (accuracy). Vertical dashed gray lines mark phase transitions at rounds 40, 
100, and 160, annotated with "Rapid Convergence," "Refinement," and "Stabilization" labels. The figure includes a 
shared legend positioned at the bottom center and uses Helvetica font for all text elements with 10pt labels and 12pt axis 
titles. 

Figure 2: Fisher Information-Based Parameter Importance Heatmap and Allocation Distribution 

 

This visualization employs a 2x1 grid layout. The left panel presents a heatmap matrix (28 rows × 12 columns) 
representing neural network layer parameters, with color intensity encoded using a perceptually uniform viridis colormap 
ranging from purple (low importance, 0.0) to yellow (high importance, 2.5). Each cell represents a parameter group 
within a layer, with row labels on the y-axis indicating layer names (Conv1, Conv2, ..., Block4, Attention, FC1, FC2) 
and column labels on the x-axis showing parameter group indices (0-11). A colorbar positioned to the right of the 
heatmap provides the Fisher Information magnitude scale. The right panel displays a horizontal bar chart showing the 
allocated privacy budget per layer, with bars colored using the same viridis colormap mapped to each layer's mean Fisher 
information. Bar lengths represent budget values ranging from 0 to 1.4 ε, with the numerical values displayed at the 
bar ends in white text. The y-axis lists layer names matching the heatmap rows, and the x-axis is labeled "Allocated 
Budget (ε)". Both panels use consistent typography: Arial, 11pt, for labels, and a figure title centered at the top in a bold, 
14pt font. 

4. Experimental Design and Performance Evaluation 

4.1. Experimental Environment and Dataset Configuration 

A. Simulation Platform and Fleet Scale Settings 

The experimental infrastructure leverages the Flower federated learning framework, integrated with PyTorch 2.0, for 
model training and the Opacus library for differential privacy. The simulation runs on a cluster of 8 NVIDIA A100 GPUs 
with 40GB of memory each, enabling parallel training of up to 64 simulated vehicle nodes per experimental run. Each 
node emulates the computational capacity of typical automotive edge computing hardware, with CPU resources limited 
to 4 cores and 8GB RAM to reflect realistic deployment constraints. 
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Fleet-scale configurations vary across experimental scenarios to evaluate scalability properties. Small fleet experiments 
involve 20-30 participating vehicles representing localized deployment in urban regions. Medium fleet scenarios 
simulate 50-100 cars corresponding to city-scale operations across metropolitan areas. Large fleet configurations range 
from 200 to 300 vehicles and model regional or national fleet deployments with diverse geographic and operational 
characteristics. Node participation follows a Poisson arrival process with a mean availability of 70%, thereby simulating 
realistic network connectivity patterns in vehicular environments. 

Communication protocols implement gradient compression via top 10% sparsification to reduce bandwidth 
consumption, a critical consideration for cellular network-based vehicle connectivity. Synchronous aggregation employs 
a minimum participation threshold of 60% to ensure sufficient gradient information per round while accommodating 
fluctuations in node availability. Asynchronous aggregation variants explore staleness-bounded aggregation accepting 
gradients up to 5 rounds old, improving training throughput at the cost of convergence speed. 

B. Dataset Partitioning and Non-IID Simulation Methods 

The primary evaluation uses the nuScenes autonomous driving dataset, which contains 1.4 million annotated 3D 
bounding boxes across 1000 driving scenarios in Boston and Singapore. The dataset provides multimodal sensor data, 
including camera images, LiDAR point clouds, and GPS trajectories, suitable for training perception models. Secondary 
evaluation uses FEMNIST, a federated version of the EMNIST handwritten character recognition dataset partitioned by 
writer identity, providing 100 clients with 671,585 total samples for non-IID heterogeneity analysis. 

Non-IID data distribution simulates realistic fleet heterogeneity through geographic and demographic partitioning 
strategies. Geographic non-IID sampling allocates samples to vehicle nodes based on spatial clustering, with vehicles 
operating in similar regions receiving correlated data samples that reflect local traffic patterns and environmental 
conditions. Demographic non-IID partitions data according to vehicle type, usage pattern, or operator demographics to 
model systematic differences in driving behavior across fleet segments. 

Label distribution skew quantification employs the Dirichlet distribution, with concentration parameter α controlling 
the magnitude of heterogeneity. Lower α values near 0.1 result in extreme label imbalance, with individual nodes 
exhibiting highly skewed class distributions, whereas higher values near 1.0 produce more balanced distributions. 
Feature distribution skew introduces covariate shift by systematically modifying input data statistics across nodes, 
simulating sensor calibration differences or environmental variation. 

Table 3: Experimental Dataset Configuration and Partitioning Statistics 

Dataset 
Total 
Samples 

Number of 
Clients 

Samples per 
Client 

Class 
Distribution 
Skew (α) 

Feature 
Heterogeneity 

Task Type 

nuScenes-
Objects 

1,400,000 50 
28,000 ± 
6,200 

0.3 (high 
skew) 

Geographic 
clustering 

3D Detection 

nuScenes-
Semantic 

800,000 50 
16,000 ± 
4,100 

0.5 (moderate 
skew) 

Scene-based 
variation 

Segmentation 

FEMNIST-
Writer 

671,585 100 6,716 ± 3,892 
N/A (natural 
writer) 

Handwriting 
style 

Classification 

CIFAR-10-
Fleet 

50,000 30 1,667 ± 450 
0.4 (high 
skew) 

Synthetic 
corruption 

Image 
Recognition 

4.2. Evaluation Metrics System Design 

Performance evaluation employs a comprehensive metric suite capturing multiple dimensions of privacy-utility-
efficiency tradeoffs. Model accuracy metrics include top-1 and top-5 classification accuracies for FEMNIST experiments 
and mean Average Precision (mAP) computed using COCO-style evaluation with IoU thresholds from 0.5 to 0.95. For 
clarity, this differs from the official nuScenes detection benchmark metric (NDS), and our reported mAP is used for 
internal comparisons of privacy strategies and Intersection over Union (IoU) scores in semantic segmentation evaluation. 
These metrics quantify the primary utility objective of federated learning: achieving high-quality model performance on 
downstream tasks. 
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Privacy protection quantification tracks cumulative privacy budget consumption measured in (ε, δ)-differential privacy 
parameters. Experiments report the total ε accumulated across all training rounds, the per-round budget allocation ε
_t, and the residual privacy budget ε_residual at the end of training. Privacy accounting employs Rényi differential 
privacy with optimal conversion to (ε, δ) using the publicly available autodp library to minimize accounting 
conservatism. Comparison benchmarks include uniform allocation (constant ε_t across all rounds) and proportional 
allocation (ε_t proportional to gradient norms). 

Convergence efficiency metrics measure the number of training rounds required to reach target accuracy thresholds, 
wall-clock training time accounting for computation and communication overhead, and total communication volume in 
bytes transmitted across all participants. Communication efficiency is of substantial importance in vehicular networks, 
given bandwidth constraints and cellular data costs. Additional metrics include node utilization rates, which measure 
effective participation across intermittently available vehicles, and fairness indices, which quantify performance variance 
across client subpopulations. 

Table 4: Comparative Performance Across Privacy Budget Allocation Strategies 

Allocation 
Strategy 

Final mAP 
(%) 

Convergence 
Rounds 

Total Budget 
(ε) 

Comm. 
Volume (GB) 

Training 
Time (hrs) 

Worst-Client 
mAP (%) 

Uniform 
Baseline 

72.3 ± 1.8 185 3.50 47.2 8.6 64.7 

Gradient-
Proportional 

74.6 ± 1.4 172 3.50 43.9 8.1 66.2 

Round-
Adaptive 
(Proposed) 

78.2 ± 1.1 156 3.50 39.8 7.2 70.4 

Layer-
Adaptive 
(Proposed) 

79.1 ± 0.9 163 3.50 41.2 7.6 71.8 

Combined 
Adaptive 

81.0 ± 0.7 142 3.50 36.1 6.6 73.5 

No Privacy 
(Oracle) 

89.4 ± 0.3 98 N/A 25.3 4.5 87.1 

4.3. Experimental Results and Comparative Analysis 

A. Privacy-Accuracy Tradeoff Performance Comparison 

Experimental results demonstrate substantial improvements in accuracy with adaptive privacy budget allocation 
compared with uniform baselines. The combined adaptive strategy, which incorporates both round-based and layer-wise 
allocation, achieves 81.0% mAP on nuScenes object detection, representing an 8.7 percentage-point improvement over 
the 72.3% mAP baseline with an equivalent total privacy budget, ε=3.50. This improvement narrows the privacy-induced 
accuracy gap from 17.1 points to 8.4 points relative to the non-private oracle model at 89.4% mAP. 

Breaking down contributions from individual adaptation mechanisms reveals complementary benefits. Round-based 
adaptive allocation alone improves accuracy to 78.2% mAP by efficiently distributing the budget to early training phases, 
when gradients carry maximal learning signal. Layer-wise Fisher information-based allocation achieves 79.1% mAP by 
protecting critical parameters in attention layers and early convolutional blocks while allowing higher noise injection in 
later layers with reduced importance. 

The combination of the two mechanisms produces synergistic effects that exceed the additive effects of the individual 
strategies. Round-based allocation provides temporal optimization across the training process, whereas layer-wise 
allocation optimizes spatial distribution across the model architecture. This dual optimization addresses both dimensions 
of budget allocation, accounting for the observed super-additive performance gains when mechanisms operate in concert. 
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Worst-client accuracy metrics assess fairness and robustness across heterogeneous vehicle nodes. Adaptive allocation 
improves worst-client mAP from 64.7% to 73.5%, an 8.8-point improvement, reducing performance disparity across the 
fleet. This fairness enhancement arises from the superior convergence properties of adaptive allocation, which 
disproportionately benefit data-poor clients by improving global model quality. 

B. Convergence Speed and Communication Efficiency Evaluation 

Convergence analysis reveals that adaptive allocation achieves the target accuracy with 23.2% fewer communication 
rounds than uniform baselines. The combined adaptive strategy requires 142 rounds to reach 80% mAP, whereas uniform 
allocation requires 185 rounds to achieve 72.3% mAP, falling short of the target even with additional training. This 
accelerated convergence directly translates into reduced communication volume, with adaptive allocation consuming 
36.1 GB versus 47.2 GB for uniform allocation, representing a 23.4% reduction in bandwidth. 

Training-time measurements account for both computational and communication overhead under realistic network 
conditions. Adaptive allocation completes training in 6.6 hours, compared with 8.6 hours for uniform allocation, a 23.3% 
reduction in training time. This efficiency gain compounds the accuracy improvement, delivering superior models in 
less time with lower communication costs—the synchronized improvement across multiple efficiency dimensions 
positions adaptive allocation as particularly valuable for resource-constrained vehicular deployments. 

Ablation studies isolate individual mechanism contributions to overall performance. Removing the round-based 
adaptation component while retaining layer-wise allocation increases the number of convergence rounds from 142 to 
163, demonstrating the substantial contribution of round-based adaptation to training efficiency. Conversely, removing 
layer-wise allocation while maintaining round-based mechanisms increases the number of rounds from 142 to 156, 
indicating that layer-wise optimization yields comparable but slightly smaller efficiency gains. 

Scalability analysis evaluates performance across varying fleet sizes from 20 to 300 vehicles. Accuracy improvements 
from adaptive allocation remain consistent across scales, with 8.5-9.2 percentage point gains observed regardless of fleet 
size. Communication efficiency gains increase with fleet scale, reaching a 27.1% bandwidth reduction in 300-vehicle 
scenarios, owing to improved gradient diversity, which enables faster convergence. These results confirm the robustness 
of adaptive allocation across realistic deployment scales. 

Table 5: Sensitivity Analysis of Key Hyperparameters 

Parameter Value Range 
Final mAP 
(%) 

Convergence 
Rounds 

Total 
Budget 
(ε) 

Optimal 
Setting 

Sensitivity 
Ranking 

Decay Rate (α) 
[1.5, 2.0, 2.5, 
3.0, 3.5, 4.0, 
4.5] 

[77.8, 79.2, 
80.4, 81.0, 
80.6, 79.9, 
78.5] 

[154, 148, 144, 142, 
143, 147, 152] 

3.50 3.0 High 

Initial Noise 
(σ₀) 

[0.3, 0.5, 0.8, 
1.0, 1.2, 1.5, 
2.0] 

[78.2, 79.8, 
80.7, 81.0, 
80.4, 79.1, 
77.3] 

[151, 146, 143, 142, 
144, 149, 156] 

3.50 1.0 High 

Critical 
Param(β

c
rit) 

[0.4, 0.5, 0.6, 
0.7, 0.8, 0.9] 

[79.4, 80.2, 
81.0, 80.6, 
79.7, 78.9] 

[147, 144, 142, 143, 
146, 150] 

3.50 0.6 Medium 

Fisher Update 
Freq 

[5, 10, 15, 20, 
25, 30] 

[80.8, 81.0, 
80.9, 80.6, 
80.1, 79.5] 

[143, 142, 142, 144, 
147, 151] 

3.50 10-15 Low 

Convergence 
Thresh (τ) 

[0.0001, 
0.0005, 0.001, 
0.005, 0.01] 

[80.4, 80.8, 
81.0, 80.5, 
79.9] 

[145, 143, 142, 146, 
150] 

3.50 0.001 Low 
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Figure 3: Multi-Dimensional Performance Visualization: Accuracy, Privacy, and Efficiency Tradeoffs 

 

This comprehensive visualization employs a 2x2 subplot grid with shared styling. The top-left panel displays a 3D 
surface plot with the x-axis representing the privacy budget (ε, from 1.0 to 6.0), the y-axis showing the number of 
training rounds (50 to 250), and the z-axis indicating model accuracy (0.60 to 0.90). The surface uses a continuous cool-
warm colormap with adaptive allocation strategy rendered in blue-purple tones and uniform allocation in orange-red 
tones. The top-right panel presents a scatter plot comparing privacy budget (x-axis, 1.5 to 5.0 ε) versus final mAP (y-
axis, 0.65 to 0.85), with point sizes proportional to communication volume (20-60 GB range) and colors indicating 
allocation strategies (adaptive in green, uniform in red, gradient-proportional in blue). Each point is accompanied by 
error bars showing ±1 standard deviation across 5 experimental runs. The bottom-left panel shows a stacked area chart 
depicting cumulative resource consumption across training rounds (x-axis, 0-200), with three stacked components: 
computation time (purple), communication time (orange), and idle waiting time (gray), comparing adaptive versus 
uniform strategies. The bottom-right panel displays a radar chart with six axes representing normalized metrics: 
accuracy, convergence speed, communication efficiency, fairness, robustness, and privacy preservation, with adaptive 
allocation (solid blue polygon) and uniform allocation (dashed red polygon) overlaid for direct comparison. All subplots 
use 11pt Roboto for labels, include gridlines for readability, and share a common figure title in bold 16pt font at the top 
center. 

5. Conclusion and Future Work 

5.1. Research Summary and Main Contributions 

This research addresses the fundamental challenge of balancing privacy protection with model performance in fleet 
federated learning through adaptive privacy budget allocation mechanisms. The proposed framework integrates two 
complementary optimization strategies: round-based dynamic allocation that concentrates privacy resources during 
critical early training phases, and layer-wise differentiated allocation that protects parameters according to Fisher 
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information-based importance scores. Experimental validation demonstrates that these mechanisms achieve 8.7% higher 
model accuracy than uniform allocation baselines while maintaining equivalent privacy guarantees at ε=3.5, and 
simultaneously improve communication efficiency by 23.4% through accelerated convergence. 

The technical contributions establish a principled methodology for privacy budget management that adapts to training 
dynamics rather than applying static allocation schedules. Round-based allocation implements exponential decay 
scheduling with convergence-triggered contraction mechanisms, thereby optimizing the temporal budget distribution 
across the training progression. Layer-wise allocation leverages Fisher Information Matrix computation to identify 
critical parameters that require concentrated protection, enabling higher noise injection in secondary parameters without 
degrading accuracy. The combination of these mechanisms provides robust performance across varying fleet sizes, levels 
of dataset heterogeneity, and privacy budget constraints. 

Practical deployment considerations include computational overhead for Fisher information computation and the 
complexity of privacy accounting in adaptive allocation schemes. The Fisher information computation adds 
approximately 8-12% computational overhead during periodic update phases, a manageable cost given the substantial 
accuracy and efficiency improvements. Privacy accounting for adaptive allocation employs Rényi differential privacy 
mechanisms that maintain tight privacy loss bounds while accommodating dynamic noise schedules. Implementation 
guidance specifies optimal hyperparameter configurations derived from extensive sensitivity analysis across multiple 
datasets and deployment scales. 

The research provides empirical evidence that adaptive privacy budget allocation is a practical pathway for fleet 
operators to implement privacy-preserving collaborative learning systems that meet regulatory requirements while 
optimizing operational performance metrics. The demonstrated accuracy improvements and efficiency gains position 
federated learning as a viable approach for autonomous vehicle data utilization without the risks of centralized data 
collection. Fleet-scale validation confirms the approach's robustness across realistic deployment scenarios, including 
heterogeneous vehicle nodes, intermittent network connectivity, and diverse geographic operating environments. 

5.2. Limitations Analysis and Future Research Directions 

Current limitations include reliance on centralized aggregation architectures, which introduce single points of failure and 
trust requirements, motivating future work on decentralized aggregation protocols compatible with adaptive privacy 
budget allocation. Peer-to-peer aggregation topologies eliminate central coordinators but introduce challenges for 
privacy accounting across multi-hop gradient propagation. Blockchain-based coordination mechanisms offer potential 
solutions through distributed consensus on allocation schedules and verifiable privacy budget tracking. 

The experimental evaluation focuses primarily on computer vision tasks for autonomous vehicle perception, leaving 
open questions regarding generalization to other vehicular applications such as predictive maintenance, energy 
optimization, or route planning. Different application domains may exhibit distinct training dynamics requiring 
customized allocation strategies. Future research should evaluate adaptive allocation across broader task categories to 
establish domain-specific configuration guidelines and identify universal optimization principles transferable across 
applications. 

Theoretical analysis of convergence guarantees for adaptive allocation schemes remains incomplete, particularly for 
non-convex optimization landscapes characteristic of deep neural networks. Existing convergence proofs for 
differentially private federated learning assume constant noise schedules, which are incompatible with adaptive 
allocation. Developing formal convergence analysis for time-varying noise schedules constitutes a significant theoretical 
contribution that would strengthen confidence in the reliability of adaptive allocation. Worst-case convergence bounds 
under adversarial adaptive allocation policies would provide robustness guarantees. 

The intersection of adaptive privacy allocation and Byzantine fault-tolerance mechanisms warrants further investigation. 
Current Byzantine-robust aggregation methods, such as Krum or trimmed mean, operate independently of privacy 
considerations, potentially creating conflicts when Byzantine detection relies on gradient magnitude patterns obscured 
by privacy noise. Co-designing privacy and robustness mechanisms could yield synergistic improvements, with privacy 
budget allocation informed by Byzantine threat models and Byzantine detection adapted to expected privacy noise 
distributions. This integrated approach would provide comprehensive security guarantees that encompass both 
confidentiality and integrity. 
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