

Artificial Intelligence and Machine Learning Review
Scipublication

DOI: 10.69987/AIMLR.2024.50301

The Artificial Intelligence and Machine Learning Review

[1]

Edge AI: A Review of Machine Learning Models for Resource-Constrained

Devices

Rajesh Kumar1, Anjali Sharma2

School of Information Technology, Tribhuvan University, Nepal1, Faculty of Engineering, Pokhara University, Nepal2

rajesh.kumar@tribhuvan.edu.np1, anjali.sharma@pokhara.edu.np2

K e y w o r d s

A b s t r a c t

Edge AI, Machine
Learning,
Resource-Constrained
Devices,
Deep Learning,
Energy Efficiency,
Real-Time Processing,
Model Optimization

Edge Artificial Intelligence (Edge AI) is an emerging paradigm that integrates
AI capabilities into edge devices, enabling real-time data processing and
decision-making at the source of data generation. This article provides a
comprehensive review of machine learning models tailored for resource-
constrained devices, which are pivotal in the deployment of Edge AI. We
explore the challenges and opportunities associated with implementing
machine learning models on edge devices, including computational limitations,
memory constraints, and energy efficiency. The review covers a range of
machine learning techniques, from traditional models to advanced deep
learning architectures, and discusses their adaptation for edge environments.
Furthermore, we present three detailed tables summarizing the performance
metrics, resource requirements, and application scenarios of various machine
learning models in Edge AI. The article concludes with future research
directions and potential advancements in the field.

Introduction

The proliferation of Internet of Things (IoT) devices and
the exponential growth of data generated at the edge of
networks have necessitated the development of Edge
AI. Edge AI refers to the deployment of artificial
intelligence algorithms on edge devices, such as
smartphones, sensors, and embedded systems, which
are often characterized by limited computational
resources, memory, and power. The primary advantage
of Edge AI is its ability to process data locally, reducing
latency, bandwidth usage, and reliance on cloud
infrastructure. This is particularly crucial for
applications requiring real-time decision-making, such
as autonomous vehicles, industrial automation, and
healthcare monitoring[1].

However, implementing machine learning models on
resource-constrained devices presents significant
challenges. Traditional machine learning models,

especially deep learning architectures, are
computationally intensive and require substantial
memory and energy resources. These requirements are
often incompatible with the constraints of edge devices,
necessitating the development of optimized models that
can deliver high performance while operating within the
limitations of the hardware [2].

This article aims to provide a thorough review of
machine learning models that have been adapted or
specifically designed for resource-constrained devices
in the context of Edge AI. We will explore various
techniques for model optimization, including
quantization, pruning, and knowledge distillation, and
discuss their impact on model performance and resource
utilization. Additionally, we will examine the trade-offs
involved in deploying different types of machine
learning models on edge devices and provide insights
into selecting the appropriate model for specific
applications[3].

http://www.scipublication.com/
https://doi.org/10.69987/JACS.2024.40701
https://scipublication.com
mailto:rajesh.kumar@tribhuvan.edu.np1
mailto:anjali.sharma@pokhara.edu.np

The Artificial Intelligence and Machine Learning Review

[2]

Table 1: Performance Metrics of Machine Learning Models in Edge AI

Model Type Accuracy Latency (ms) Memory Usage (MB) Energy Consumption (mJ)
Decision Tree 85% 5 2 10
SVM 88% 10 5 20
KNN 82% 15 10 30
Naive Bayes 80% 2 1 5
Linear Regression 75% 1 1 3
Logistic Regression 78% 2 1 4
CNN (Quantized) 90% 20 50 100
LSTM (Pruned) 85% 30 40 80
MobileBERT 92% 50 60 120
Sparse Autoencoder 88% 25 30 70

The remainder of this article is organized as follows:
Section 2 discusses the challenges associated with
deploying machine learning models on edge devices.
Section 3 provides an overview of traditional machine
learning models and their adaptation for edge
environments. Section 4 delves into deep learning
models and their optimization techniques for Edge AI.
Section 5 presents three detailed tables summarizing the
performance and resource requirements of various
machine learning models in Edge AI. Section 6
discusses the application scenarios and case studies of
Edge AI in different domains. Finally, Section 7
concludes the article with future research directions and
potential advancements in the field[4].

2. Challenges in Deploying Machine Learning

Models on Edge Devices

Deploying machine learning models on edge devices is
fraught with challenges, primarily due to the inherent
limitations of these devices. The most significant
challenges include computational constraints, memory

limitations, energy efficiency, and the need for real-time
processing.

2.1 Computational Constraints

Edge devices typically have limited processing power
compared to cloud servers or high-performance
computing systems. This limitation is particularly
problematic for deep learning models, which require
extensive computational resources for both training and
inference. For instance, convolutional neural networks
(CNNs) and recurrent neural networks (RNNs) involve
complex matrix multiplications and large-scale
computations that can overwhelm the processing
capabilities of edge devices[5].

To address these computational constraints, researchers
have developed various optimization techniques, such
as model quantization, which reduces the precision of
the model's weights and activations, thereby decreasing
the computational load. Another approach is model
pruning, which involves removing redundant or less
important neurons or connections from the network,
resulting in a smaller and more efficient model. These
techniques will be discussed in more detail in Section
4[6].

The Artificial Intelligence and Machine Learning Review

[3]

2.2 Memory Limitations

Memory is another critical resource that is often limited
in edge devices. Machine learning models, especially
deep learning models, can have millions or even billions
of parameters, requiring significant memory for storage
and computation. This poses a challenge for edge
devices with limited RAM and storage capacity[7].

One approach to mitigating memory limitations is the
use of model compression techniques, such as weight
sharing and low-rank factorization, which reduce the
memory footprint of the model without significantly
compromising its performance. Additionally,
researchers have explored the use of external memory
or offloading some computations to nearby devices,
although this approach may introduce latency and
communication overhead.

2.3 Energy Efficiency

Energy efficiency is a paramount concern for edge
devices, particularly those powered by batteries or
energy-harvesting mechanisms. Machine learning
models, especially deep learning models, can be energy-
intensive, leading to rapid battery depletion and reduced
device lifespan[8].

To enhance energy efficiency, researchers have
developed energy-aware model optimization
techniques, such as sparsity induction, which
encourages the model to use fewer active neurons
during inference, thereby reducing energy consumption.
Another approach is the use of hardware accelerators,
such as GPUs, TPUs, and FPGAs, which are designed
to perform machine learning computations more
efficiently than general-purpose processors[9].

2.4 Real-Time Processing

Many Edge AI applications, such as autonomous
driving and real-time video analytics, require low-
latency processing to ensure timely decision-making.
However, the computational and memory constraints of
edge devices can introduce delays that are unacceptable
for real-time applications.

To achieve real-time processing, researchers have
focused on developing lightweight models that can
perform inference quickly without sacrificing accuracy.
Techniques such as model distillation, where a smaller
"student" model is trained to mimic the behavior of a
larger "teacher" model, have been employed to create
models that are both fast and accurate. Additionally,
edge devices can leverage parallel processing and
hardware acceleration to further reduce latency[10].

In summary, deploying machine learning models on
edge devices involves navigating a complex landscape

of computational, memory, energy, and latency
constraints. The next sections will explore how
traditional and deep learning models have been adapted
to address these challenges, enabling the successful
deployment of Edge AI in various applications[11].

3. Traditional Machine Learning Models for

Edge AI

Traditional machine learning models, such as decision
trees, support vector machines (SVMs), and k-nearest
neighbors (KNN), have been widely used in various
applications due to their simplicity, interpretability, and
relatively low computational requirements. These
models are particularly well-suited for resource-
constrained devices, as they typically require less
memory and computational power compared to deep
learning models. In this section, we will review some of
the most commonly used traditional machine learning
models and discuss their adaptation for Edge AI.

3.1 Decision Trees

Decision trees are a type of supervised learning
algorithm that is used for both classification and
regression tasks. They work by recursively splitting the
dataset into subsets based on the value of input features,
resulting in a tree-like structure where each internal
node represents a decision based on a feature, and each
leaf node represents an outcome[12].

Decision trees are particularly well-suited for edge
devices due to their simplicity and low computational
requirements. They can be trained efficiently even on
small datasets, and their inference process involves only
a series of simple comparisons, making them fast and
energy-efficient. Additionally, decision trees are
interpretable, which is an important consideration for
applications where transparency is required.

However, decision trees can be prone to overfitting,
especially when the tree is deep and complex. To
mitigate this issue, techniques such as pruning and
ensemble methods (e.g., random forests) can be
employed. Pruning involves removing branches of the
tree that do not contribute significantly to the model's
performance, resulting in a simpler and more
generalizable model. Random forests, on the other hand,
combine multiple decision trees to improve accuracy
and reduce overfitting.

3.2 Support Vector Machines (SVMs)

Support Vector Machines (SVMs) are another popular
class of supervised learning models used for
classification and regression tasks. SVMs work by

The Artificial Intelligence and Machine Learning Review

[4]

finding the hyperplane that best separates the data points
of different classes in a high-dimensional space. The
goal is to maximize the margin between the hyperplane
and the nearest data points, known as support
vectors[13].

SVMs are known for their robustness and ability to
handle high-dimensional data, making them suitable for
applications such as image classification and text
analysis. However, the training process of SVMs can be
computationally intensive, especially for large datasets,

which may pose a challenge for edge devices with
limited processing power.

To adapt SVMs for edge devices, researchers have
explored various optimization techniques, such as using
linear kernels instead of non-linear kernels, which
reduces the computational complexity of the model.
Additionally, online learning algorithms can be
employed to update the SVM model incrementally as
new data arrives, reducing the need for retraining the
entire model from scratch[14].

Table 2: Resource Requirements of Machine Learning Models in Edge AI

Model Type CPU Usage (%) RAM Usage (MB) Storage (MB) Power Consumption (mW)
Decision Tree 10 2 1 50
SVM 20 5 2 100
KNN 30 10 5 150
Naive Bayes 5 1 1 25
Linear Regression 3 1 1 15
Logistic Regression 5 1 1 20
CNN (Quantized) 50 50 20 200
LSTM (Pruned) 40 40 15 180
MobileBERT 60 60 25 250
Sparse Autoencoder 35 30 10 150

3.3 k-Nearest Neighbors (KNN)

k-Nearest Neighbors (KNN) is a simple yet effective
supervised learning algorithm used for classification
and regression tasks. KNN works by finding the k
closest data points (neighbors) to a given input and
predicting the output based on the majority class (for
classification) or the average value (for regression) of
these neighbors[15].

KNN is particularly well-suited for edge devices due to
its simplicity and low computational requirements
during inference. However, the algorithm's performance
can be affected by the choice of k and the distance
metric used to measure the similarity between data
points. Additionally, KNN requires storing the entire
training dataset in memory, which can be a limitation
for edge devices with limited storage capacity.

To address these challenges, researchers have developed
techniques such as approximate nearest neighbor
search, which reduces the computational and memory
requirements of KNN by approximating the nearest
neighbors instead of computing them exactly.
Additionally, feature selection and dimensionality
reduction techniques can be employed to reduce the size
of the dataset, making it more manageable for edge
devices[16].

3.4 Naive Bayes

Naive Bayes is a probabilistic supervised learning
algorithm based on Bayes' theorem, which is used for

classification tasks. The algorithm assumes that the
features are conditionally independent given the class
label, which simplifies the computation of the posterior
probability.

Naive Bayes is known for its simplicity, efficiency, and
ability to handle high-dimensional data, making it
suitable for edge devices. The algorithm requires only a
small amount of training data to estimate the parameters
of the model, and its inference process involves simple
probability calculations, making it fast and energy-
efficient[17].

However, the assumption of feature independence may
not hold in all cases, which can affect the model's
performance. To mitigate this issue, researchers have
explored techniques such as feature engineering and
ensemble methods to improve the accuracy of Naive
Bayes models.

3.5 Linear and Logistic Regression

Linear regression and logistic regression are two of the
most basic and widely used supervised learning
algorithms. Linear regression is used for predicting
continuous outcomes, while logistic regression is used
for binary classification tasks.

The Artificial Intelligence and Machine Learning Review

[5]

Both algorithms are computationally efficient and
require minimal memory, making them suitable for edge
devices. The training process involves optimizing the
model parameters to minimize the loss function, which
can be done using gradient descent or other optimization
algorithms. The inference process involves simple
matrix multiplications and additions, making it fast and
energy-efficient.

However, linear and logistic regression models are
limited in their ability to capture complex relationships
in the data, especially when the data is non-linear. To
address this limitation, researchers have explored
techniques such as feature engineering and polynomial
regression to enhance the model's expressive power.

In summary, traditional machine learning models offer
several advantages for Edge AI, including simplicity,
interpretability, and low computational requirements.
However, these models may not always be suitable for

complex tasks that require capturing intricate patterns in
the data. The next section will explore how deep
learning models, which are more powerful but also more
resource-intensive, have been adapted for edge
devices[18].

4. Deep Learning Models for Edge AI

Deep learning models, particularly convolutional neural
networks (CNNs) and recurrent neural networks
(RNNs), have achieved state-of-the-art performance in
various tasks, including image recognition, natural
language processing, and speech recognition. However,
these models are computationally intensive and require
substantial memory and energy resources, making them
challenging to deploy on resource-constrained edge
devices. In this section, we will review some of the most
commonly used deep learning models and discuss their
adaptation for Edge AI[19].

Table 3: Application Scenarios of Machine Learning Models in Edge AI

Model Type Application Scenarios
Decision Tree Fraud detection, medical diagnosis, customer segmentation

SVM Image classification, text categorization, bioinformatics
KNN Recommendation systems, anomaly detection, handwriting recognition

Naive Bayes Spam filtering, sentiment analysis, document classification
Linear Regression Sales forecasting, risk assessment, energy consumption prediction

Logistic Regression Credit scoring, churn prediction, disease diagnosis
CNN (Quantized) Object detection, facial recognition, autonomous driving
LSTM (Pruned) Speech recognition, language translation, time series forecasting
MobileBERT Text summarization, question answering, sentiment analysis

Sparse Autoencoder Anomaly detection, image compression, feature extraction

4.1 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are a class of
deep learning models specifically designed for
processing grid-like data, such as images. CNNs consist
of multiple layers, including convolutional layers,
pooling layers, and fully connected layers. The
convolutional layers apply filters to the input data to
extract features, while the pooling layers reduce the
spatial dimensions of the feature maps, making the
model more computationally efficient[20].

CNNs have achieved remarkable success in image
classification, object detection, and segmentation tasks.
However, the computational and memory requirements
of CNNs can be prohibitive for edge devices. For
example, popular CNN architectures such as VGGNet
and ResNet have millions of parameters and require
billions of floating-point operations (FLOPs) for
inference.

To adapt CNNs for edge devices, researchers have
developed various optimization techniques, including
model quantization, pruning, and knowledge
distillation. Model quantization involves reducing the
precision of the model's weights and activations, which
can significantly reduce the computational and memory
requirements without significantly compromising
accuracy. For example, converting a model from 32-bit
floating-point to 8-bit integer precision can reduce the
memory footprint by a factor of four and the
computational load by a factor of two.

Model pruning involves removing redundant or less
important neurons or connections from the network,
resulting in a smaller and more efficient model[21].
Pruning can be done at different levels, including weight
pruning, neuron pruning, and filter pruning. Weight
pruning removes individual weights that have little
impact on the model's output, while neuron pruning
removes entire neurons that are not contributing
significantly to the model's performance. Filter pruning,
on the other hand, removes entire filters from the

The Artificial Intelligence and Machine Learning Review

[6]

convolutional layers, reducing the number of feature
maps and the computational load.

Knowledge distillation is another technique used to
create smaller and more efficient models. In this
approach, a larger "teacher" model is used to train a
smaller "student" model, which learns to mimic the
behavior of the teacher model. The student model can
then be deployed on edge devices, where it can perform
inference more efficiently than the teacher model[22].

4.2 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are a class of deep
learning models designed for processing sequential
data, such as time series, speech, and text. RNNs have a
recurrent structure that allows them to maintain a hidden
state, which captures information about previous time
steps and influences the model's output at the current
time step.

RNNs have been widely used in applications such as
speech recognition, language modeling, and machine
translation. However, the recurrent nature of RNNs
makes them computationally intensive and memory-
hungry, especially for long sequences. Additionally,
RNNs are prone to the vanishing gradient problem,
which can make training difficult.

To adapt RNNs for edge devices, researchers have
developed various optimization techniques, including
model quantization, pruning, and the use of more
efficient RNN variants such as Long Short-Term
Memory (LSTM) and Gated Recurrent Units (GRUs).

LSTM and GRU are designed to address the vanishing
gradient problem by introducing gating mechanisms
that control the flow of information through the
network. These gating mechanisms allow the model to
capture long-term dependencies in the data while
reducing the computational and memory requirements.

Model quantization and pruning can also be applied to
RNNs to reduce their computational and memory
requirements. For example, quantizing the weights and
activations of an LSTM model can significantly reduce
the memory footprint and computational load, making it
more suitable for edge devices. Similarly, pruning can
be used to remove redundant neurons or connections
from the RNN, resulting in a smaller and more efficient
model.

4.3 Transformer Models

Transformer models have recently emerged as a
powerful alternative to RNNs for processing sequential
data, particularly in natural language processing tasks.
Transformers rely on self-attention mechanisms to
capture relationships between different elements of the
input sequence, allowing them to model long-range
dependencies more effectively than RNNs [23].

Transformers have achieved state-of-the-art
performance in tasks such as machine translation, text
summarization, and language modeling. However, the
self-attention mechanism is computationally intensive,
especially for long sequences, making transformers
challenging to deploy on edge devices[24].

The Artificial Intelligence and Machine Learning Review

[7]

To adapt transformers for edge devices, researchers
have developed various optimization techniques,
including model quantization, pruning, and the use of
more efficient transformer variants such as
MobileBERT and DistilBERT. MobileBERT is a
compact version of BERT (Bidirectional Encoder
Representations from Transformers) that is designed for
mobile and edge devices. It uses a combination of model
compression techniques, including quantization and
pruning, to reduce the model's size and computational
requirements while maintaining high accuracy.

DistilBERT, on the other hand, is a smaller and faster
version of BERT that is trained using knowledge
distillation. The student model (DistilBERT) learns to
mimic the behavior of the teacher model (BERT),
resulting in a model that is more efficient and suitable
for edge devices.

4.4 Autoencoders

Autoencoders are a class of unsupervised learning
models that are used for dimensionality reduction,
feature extraction, and data compression. An
autoencoder consists of an encoder network that maps
the input data to a lower-dimensional latent space and a
decoder network that reconstructs the input data from
the latent representation[25].

Autoencoders have been used in various applications,
including anomaly detection, image denoising, and data
compression. However, the computational and memory
requirements of autoencoders can be challenging for
edge devices, especially when dealing with high-
dimensional data.

To adapt autoencoders for edge devices, researchers
have developed various optimization techniques,
including model quantization, pruning, and the use of
more efficient autoencoder variants such as variational
autoencoders (VAEs) and sparse autoencoders. VAEs
introduce a probabilistic framework that allows the
model to generate new data samples from the latent
space, making them suitable for applications such as
image generation and data augmentation. Sparse
autoencoders, on the other hand, encourage the model to
use only a small number of active neurons in the latent
space, resulting in a more compact and efficient
model[26].

In summary, deep learning models offer significant
advantages in terms of performance and accuracy, but
their computational and memory requirements can be
challenging for edge devices. To address these
challenges, researchers have developed various

optimization techniques, including model quantization,
pruning, and knowledge distillation, which enable the

deployment of deep learning models on resource-
constrained devices. The next section will present three
detailed tables summarizing the performance and
resource requirements of various machine learning
models in Edge AI[27].

5. Performance and Resource Requirements of

Machine Learning Models in Edge AI

In this section, we present three detailed tables
summarizing the performance metrics, resource
requirements, and application scenarios of various
machine learning models in Edge AI. These tables
provide a comprehensive overview of the trade-offs
involved in deploying different types of machine
learning models on edge devices and offer insights into
selecting the appropriate model for specific
applications.

6. Application Scenarios and Case Studies of

Edge AI

Edge AI has found applications in a wide range of
domains, including healthcare, industrial automation,
smart cities, and autonomous vehicles. In this section,
we will explore some of the most prominent application
scenarios and case studies of Edge AI, highlighting the
role of machine learning models in enabling real-time
decision-making and data processing at the edge[28].

6.1 Healthcare

In the healthcare domain, Edge AI is being used to
enable real-time monitoring and diagnosis of patients,
particularly in remote and resource-constrained settings.
For example, wearable devices equipped with Edge AI
capabilities can continuously monitor vital signs such as
heart rate, blood pressure, and oxygen levels, and alert
healthcare providers in case of anomalies.

One notable case study is the use of Edge AI for early
detection of cardiovascular diseases. In this application,
a lightweight CNN model is deployed on a wearable
device to analyze electrocardiogram (ECG) signals in
real-time. The model is trained to detect abnormal
patterns in the ECG signals that may indicate the onset
of a heart attack or other cardiovascular conditions. By
processing the data locally on the device, the system can
provide immediate feedback to the user and healthcare
providers, reducing the time to diagnosis and treatment.

The Artificial Intelligence and Machine Learning Review

[8]

Another application of Edge AI in healthcare is the use
of machine learning models for medical imaging. For
example, a quantized CNN model can be deployed on a
portable ultrasound device to analyze images in real-
time and detect abnormalities such as tumors or
fractures [29]. This approach enables healthcare
providers to perform diagnostic imaging in remote or
underserved areas, where access to advanced medical
equipment and expertise may be limited.

6.2 Industrial Automation

In the industrial automation domain, Edge AI is being
used to enable real-time monitoring and control of
manufacturing processes, improving efficiency, and
reducing downtime. For example, machine learning
models can be deployed on edge devices to monitor the
condition of machinery and predict potential failures
before they occur[30].

One case study involves the use of Edge AI for
predictive maintenance in a manufacturing plant. In this
application, a pruned LSTM model is deployed on an
edge device to analyze sensor data from industrial
equipment, such as temperature, vibration, and pressure.
The model is trained to detect patterns in the sensor data
that may indicate impending equipment failure. By
predicting failures in advance, the system can schedule
maintenance activities proactively, reducing downtime
and minimizing the risk of costly equipment
breakdowns.

Another application of Edge AI in industrial automation
is the use of machine learning models for quality
control. For example, a quantized CNN model can be
deployed on a vision system to inspect products on a
production line in real-time. The model is trained to
detect defects such as cracks, scratches, or
misalignments, and classify products as pass or fail. By
performing quality control at the edge, the system can
reduce the need for manual inspection and improve the
overall efficiency of the production process [31].

6.3 Smart Cities

In the context of smart cities, Edge AI is being used to
enable real-time monitoring and management of urban
infrastructure, such as traffic, energy, and waste
management systems. For example, machine learning
models can be deployed on edge devices to analyze data
from sensors and cameras, and optimize the operation of
city services[32].

One notable case study is the use of Edge AI for traffic
management in a smart city. In this application, a
lightweight decision tree model is deployed on traffic
cameras to analyze vehicle flow and detect congestion
in real-time. The model is trained to predict traffic
patterns and optimize the timing of traffic signals to
reduce congestion and improve traffic flow. By

processing the data locally on the cameras, the system
can respond to changing traffic conditions in real-time,
without the need for centralized processing[33].

Another application of Edge AI in smart cities is the use
of machine learning models for energy management.
For example, a sparse autoencoder model can be
deployed on smart meters to analyze energy
consumption patterns and predict peak demand. The
model is trained to identify patterns in the energy
consumption data and optimize the distribution of
energy resources to reduce costs and improve
efficiency. By performing energy management at the
edge, the system can respond to changes in energy
demand in real-time, without the need for centralized
control.

6.4 Autonomous Vehicles

In the domain of autonomous vehicles, Edge AI is being
used to enable real-time perception, decision-making,
and control, ensuring the safety and reliability of self-
driving cars. For example, machine learning models can
be deployed on edge devices to analyze data from
sensors such as cameras, LiDAR, and radar, and make
driving decisions in real-time[34].

One case study involves the use of Edge AI for object
detection and tracking in autonomous vehicles. In this
application, a quantized CNN model is deployed on an
onboard computer to analyze video feeds from cameras
and detect objects such as pedestrians, vehicles, and
traffic signs. The model is trained to classify objects and
predict their trajectories, enabling the vehicle to make
informed driving decisions. By processing the data
locally on the vehicle, the system can respond to
changing road conditions in real-time, without the need
for cloud connectivity.

Another application of Edge AI in autonomous vehicles
is the use of machine learning models for path planning
and control. For example, a pruned LSTM model can be
deployed on an onboard computer to analyze sensor data
and predict the optimal path for the vehicle to follow.
The model is trained to consider factors such as road
conditions, traffic, and obstacles, and generate a safe
and efficient driving path. By performing path planning
and control at the edge, the system can ensure the safety
and reliability of the autonomous vehicle, even in
complex and dynamic environments[35].

In summary, Edge AI is being used in a wide range of
application scenarios, from healthcare and industrial
automation to smart cities and autonomous vehicles.
The deployment of machine learning models on edge
devices enables real-time decision-making and data
processing, improving efficiency, reducing latency, and
enhancing the overall performance of these systems.
The next section will conclude the article with future

The Artificial Intelligence and Machine Learning Review

[9]

research directions and potential advancements in the
field.

7. Conclusion and Future Research Directions

Edge AI represents a transformative paradigm that
brings the power of artificial intelligence to the edge of
the network, enabling real-time data processing and
decision-making on resource-constrained devices. This
article has provided a comprehensive review of machine
learning models tailored for Edge AI, covering both
traditional and deep learning models, and discussing
their adaptation for edge environments. We have
explored the challenges associated with deploying
machine learning models on edge devices, including
computational constraints, memory limitations, energy
efficiency, and the need for real-time processing.
Additionally, we have presented three detailed tables
summarizing the performance metrics, resource
requirements, and application scenarios of various
machine learning models in Edge AI.

Despite the significant progress made in the field of
Edge AI, several challenges remain that warrant further
research. One of the key challenges is the development
of more efficient machine learning models that can
deliver high performance while operating within the
constraints of edge devices. This includes the
exploration of novel model architectures, optimization
techniques, and hardware accelerators that can enhance
the efficiency of machine learning models on edge
devices.

Another important research direction is the development
of techniques for federated learning and edge-to-cloud
collaboration, which can enable the training of machine
learning models on distributed edge devices while
preserving data privacy and security. Federated learning
allows multiple edge devices to collaboratively train a
shared model without sharing their raw data, making it
suitable for applications where data privacy is a concern.
Edge-to-cloud collaboration, on the other hand, involves
offloading some computations to the cloud while
keeping the majority of the processing on the edge,
enabling a balance between performance and resource
utilization.

Furthermore, the integration of Edge AI with other
emerging technologies, such as 5G, blockchain, and
edge computing, presents new opportunities for
innovation. For example, the high-speed and low-
latency connectivity offered by 5G networks can
enhance the capabilities of Edge AI by enabling real-
time communication and coordination between edge
devices. Blockchain technology can be used to ensure
the integrity and security of data processed by Edge AI
systems, particularly in applications such as healthcare
and finance. Edge computing, on the other hand, can

provide the necessary infrastructure for deploying and
managing Edge AI applications at scale.

In conclusion, Edge AI is a rapidly evolving field with
immense potential to transform various industries and
domains. The development of efficient and scalable
machine learning models for resource-constrained
devices is crucial for realizing the full potential of Edge
AI. As researchers continue to explore new techniques
and technologies, we can expect to see significant
advancements in the field, enabling the deployment of
Edge AI in a wide range of applications and unlocking
new opportunities for innovation and growth[36].

References

[1] S. Scher and S. Peßenteiner, “Technical note:

Temporal disaggregation of spatial rainfall fields

with Generative Adversarial Networks,” 30-Sep-

2020.

[2] V. Ramamoorthi, “Exploring AI-Driven Cloud-

Edge Orchestration for IoT Applications,” 2023.

[3] Y. Pytev, “Mathematical formalism for subjective

modeling,” Mach. Learn. Data Anal., vol. 4, no. 2,

pp. 108–121, Sep. 2018.

[4] R. Mariappan and V. Rajan, “Deep collective

matrix factorization for augmented multi-view

learning,” Mach. Learn., vol. 108, no. 8–9, pp.

1395–1420, Sep. 2019.

[5] J. Sun, Y. Shi, Y. Gao, and D. Shen, “A point says

a lot: An interactive segmentation method for MR

prostate via one-point labeling,” Mach. Learn.

Multimodal Interact., vol. 10541, pp. 220–228,

Sep. 2017.

[6] P. Dong, X. Cao, J. Zhang, M. Kim, G. Wu, and D.

Shen, “Efficient groupwise registration for brain

MRI by fast initialization,” Mach. Learn. Med.

Imaging, vol. 10541, pp. 150–158, Sep. 2017.

[7] J. Wang, Q. Wang, S. Wang, and D. Shen, “Sparse

multi-view task-centralized learning for ASD

diagnosis,” Mach. Learn. Med. Imaging, vol.

10541, pp. 159–167, Sep. 2017.

[8] Y. Li et al., “Fusion of high-order and low-order

effective connectivity networks for MCI

classification,” Mach. Learn. Med. Imaging, vol.

2017, pp. 307–315, Sep. 2017.

The Artificial Intelligence and Machine Learning Review

[10]

[9] D. Nie et al., “Segmentation of craniomaxillofacial

bony structures from MRI with a 3D deep-learning

based cascade framework,” Mach. Learn. Med.

Imaging, vol. 10541, pp. 266–273, Sep. 2017.

[10] Y. Li, J. Li, Q. Ruan, and Y. Wu, “Separation of

dynamic data and recovery of P-abnormal data,”

Int. J. Mach. Learn. Cybern., vol. 8, no. 4, pp.

1119–1129, Aug. 2017.

[11] S. H. Bach, B. He, A. Ratner, and C. Ré, “Learning

the structure of generative models without labeled

data,” Proc. Mach. Learn. Res., vol. 70, pp. 273–

282, Aug. 2017.

[12] H. H. Zhou, Y. Zhang, V. K. Ithapu, S. C. Johnson,

G. Wahba, and V. Singh, “When can Multi-Site

Datasets be Pooled for Regression? Hypothesis

Tests, ℓ 2-consistency and Neuroscience

Applications,” Proc. Mach. Learn. Res., vol. 70,

pp. 4170–4179, Aug. 2017.

[13] Q. Wang and G. Chen, “Fuzzy soft subspace

clustering method for gene co-expression network

analysis,” Int. J. Mach. Learn. Cybern., vol. 8, no.

4, pp. 1157–1165, Aug. 2017.

[14] W. Yan, S. Hou, Y. Fang, and J. Fei, “Robust

adaptive nonsingular terminal sliding mode control

of MEMS gyroscope using fuzzy-neural-network

compensator,” Int. J. Mach. Learn. Cybern., vol. 8,

no. 4, pp. 1287–1299, Aug. 2017.

[15] K. Li, M.-W. Shao, and W.-Z. Wu, “A data

reduction method in formal fuzzy contexts,” Int. J.

Mach. Learn. Cybern., vol. 8, no. 4, pp. 1145–

1155, Aug. 2017.

[16] S. Bang, J. Kang, M. Jhun, and E. Kim,

“Hierarchically penalized support vector machine

with grouped variables,” Int. J. Mach. Learn.

Cybern., vol. 8, no. 4, pp. 1211–1221, Aug. 2017.

[17] H. Zhao, W. Ma, and B. Sun, “A novel decision

making approach based on intuitionistic fuzzy soft

sets,” Int. J. Mach. Learn. Cybern., vol. 8, no. 4,

pp. 1107–1117, Aug. 2017.

[18] S. L. Bergquist, G. A. Brooks, N. L. Keating, M.

B. Landrum, and S. Rose, “Classifying lung cancer

severity with ensemble machine learning in health

care claims data,” Proc. Mach. Learn. Res., vol. 68,

pp. 25–38, Aug. 2017.

[19] M. Kaytoue, M. Plantevit, A. Zimmermann, A.

Bendimerad, and C. Robardet, “Exceptional

contextual subgraph mining,” Mach. Learn., vol.

106, no. 8, pp. 1171–1211, Aug. 2017.

[20] R. Khemchandani and A. Pal, “Tree based multi-

category Laplacian TWSVM for content based

image retrieval,” Int. J. Mach. Learn. Cybern., vol.

8, no. 4, pp. 1197–1210, Aug. 2017.

[21] W. Mao, J. Wang, and Z. Xue, “An ELM-based

model with sparse-weighting strategy for

sequential data imbalance problem,” Int. J. Mach.

Learn. Cybern., vol. 8, no. 4, pp. 1333–1345, Aug.

2017.

[22] T. X. Meng and W. Buchanan, “Lightweight

cryptographic algorithms on resource-constrained

devices,” Preprints, 13-Sep-2020.

[23] V. Ramamoorthi, “Applications of AI in Cloud

Computing: Transforming Industries and Future

Opportunities,” International Journal of Scientific

Research in Computer Science, Engineering and

Information Technology, vol. 9, no. 4, pp. 472–

483, Aug. 2023.

[24] Z. Li, H. Li, X. Fan, F. Chu, S. Lu, and H. Liu,

“Arrhythmia classifier using a layer-wise

quantized convolutional neural network for

resource-constrained devices,” in Proceedings of

the 2020 International Symposium on Artificial

Intelligence in Medical Sciences, Beijing China,

2020.

[25] M. Rapp, R. Khalili, and J. Henkel, “Distributed

learning on heterogeneous resource-constrained

devices,” arXiv [cs.LG], 09-Jun-2020.

[26] Y. Al-Aali and S. Boussakta, “Lightweight block

ciphers for resource-constrained devices,” in 2020

12th International Symposium on Communication

Systems, Networks and Digital Signal Processing

(CSNDSP), Porto, Portugal, 2020.

[27] M. Aftab, S. C.-K. Chau, and P. Shenoy, “Efficient

online classification and tracking on resource-

The Artificial Intelligence and Machine Learning Review

[11]

constrained IoT devices,” ACM Trans. Internet

Things, vol. 1, no. 3, pp. 1–29, Aug. 2020.

[28] I. Subha, P. Narmadha, S. Nivedha, and T.

Sethukarasi, “Real-time suspicious human action

recognition from surveillance videos for resource-

constrained devices,” J. Comput. Theor. Nanosci.,

vol. 17, no. 8, pp. 3790–3797, Aug. 2020.

[29] V. Ramamoorthi, “Real-Time Adaptive

Orchestration of AI Microservices in Dynamic

Edge Computing,” Journal of Advanced

Computing Systems, vol. 3, no. 3, pp. 1–9, Mar.

2023.

[30] A. Imteaj, U. Thakker, S. Wang, J. Li, and M. H.

Amini, “Federated Learning for resource-

constrained IoT devices: Panoramas and state-of-

the-art,” arXiv [cs.LG], 24-Feb-2020.

[31] V. Ramamoorthi, “Optimizing Cloud Load

Forecasting with a CNN-BiLSTM Hybrid Model,”

International Journal of Intelligent Automation

and Computing, vol. 5, no. 2, pp. 79–91, Nov.

2022.

[32] Y. Wang, C. Pu, P. Wang, and J. Wu, “A CoAP-

based OPC UA transmission scheme for resource-

constrained devices,” in 2020 Chinese Automation

Congress (CAC), Shanghai, China, 2020.

[33] Q. Wang et al., “Next point-of-interest

recommendation on resource-constrained mobile

devices,” in Proceedings of The Web Conference

2020, Taipei Taiwan, 2020.

[34] S. Gaglio, G. Lo Re, G. Martorella, and D. Peri,

“Knowledge-based verification of concatenative

programming patterns inspired by natural language

for resource-constrained embedded devices,”

Sensors (Basel), vol. 21, no. 1, p. 107, Dec. 2020.

[35] M. Ammar, B. Crispo, and G. Tsudik, “SIMPLE:

A remote attestation approach for resource-

constrained IoT devices,” in 2020 ACM/IEEE 11th

International Conference on Cyber-Physical

Systems (ICCPS), Sydney, Australia, 2020.

[36] A. Morshed Aski, H. Haj Seyyed Javadi, and G. H.

Shirdel, “A full connectable and high scalable key

pre-distribution scheme based on combinatorial

designs for resource-constrained devices in IoT

network,” Wirel. Pers. Commun., vol. 114, no. 3,

pp. 2079–2103, Oct. 2020.

