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Edge Artificial Intelligence (Edge AI) is an emerging paradigm that integrates 
AI capabilities into edge devices, enabling real-time data processing and 
decision-making at the source of data generation. This article provides a 
comprehensive review of machine learning models tailored for resource-
constrained devices, which are pivotal in the deployment of Edge AI. We 
explore the challenges and opportunities associated with implementing 
machine learning models on edge devices, including computational limitations, 
memory constraints, and energy efficiency. The review covers a range of 
machine learning techniques, from traditional models to advanced deep 
learning architectures, and discusses their adaptation for edge environments. 
Furthermore, we present three detailed tables summarizing the performance 
metrics, resource requirements, and application scenarios of various machine 
learning models in Edge AI. The article concludes with future research 
directions and potential advancements in the field. 
 

Introduction 

The proliferation of Internet of Things (IoT) devices and 
the exponential growth of data generated at the edge of 
networks have necessitated the development of Edge 
AI. Edge AI refers to the deployment of artificial 
intelligence algorithms on edge devices, such as 
smartphones, sensors, and embedded systems, which 
are often characterized by limited computational 
resources, memory, and power. The primary advantage 
of Edge AI is its ability to process data locally, reducing 
latency, bandwidth usage, and reliance on cloud 
infrastructure. This is particularly crucial for 
applications requiring real-time decision-making, such 
as autonomous vehicles, industrial automation, and 
healthcare monitoring[1]. 

However, implementing machine learning models on 
resource-constrained devices presents significant 
challenges. Traditional machine learning models,  

 

especially deep learning architectures, are 
computationally intensive and require substantial 
memory and energy resources. These requirements are 
often incompatible with the constraints of edge devices, 
necessitating the development of optimized models that 
can deliver high performance while operating within the 
limitations of the hardware [2]. 

This article aims to provide a thorough review of 
machine learning models that have been adapted or 
specifically designed for resource-constrained devices 
in the context of Edge AI. We will explore various 
techniques for model optimization, including 
quantization, pruning, and knowledge distillation, and 
discuss their impact on model performance and resource 
utilization. Additionally, we will examine the trade-offs 
involved in deploying different types of machine 
learning models on edge devices and provide insights 
into selecting the appropriate model for specific 
applications[3]. 
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Table 1: Performance Metrics of Machine Learning Models in Edge AI 

Model Type Accuracy Latency (ms) Memory Usage (MB) Energy Consumption (mJ) 
Decision Tree 85% 5 2 10 
SVM 88% 10 5 20 
KNN 82% 15 10 30 
Naive Bayes 80% 2 1 5 
Linear Regression 75% 1 1 3 
Logistic Regression 78% 2 1 4 
CNN (Quantized) 90% 20 50 100 
LSTM (Pruned) 85% 30 40 80 
MobileBERT 92% 50 60 120 
Sparse Autoencoder 88% 25 30 70 

 

The remainder of this article is organized as follows: 
Section 2 discusses the challenges associated with 
deploying machine learning models on edge devices. 
Section 3 provides an overview of traditional machine 
learning models and their adaptation for edge 
environments. Section 4 delves into deep learning 
models and their optimization techniques for Edge AI. 
Section 5 presents three detailed tables summarizing the 
performance and resource requirements of various 
machine learning models in Edge AI. Section 6 
discusses the application scenarios and case studies of 
Edge AI in different domains. Finally, Section 7 
concludes the article with future research directions and 
potential advancements in the field[4]. 

2. Challenges in Deploying Machine Learning 

Models on Edge Devices 

Deploying machine learning models on edge devices is 
fraught with challenges, primarily due to the inherent 
limitations of these devices. The most significant 
challenges include computational constraints, memory  

 

 

limitations, energy efficiency, and the need for real-time 
processing. 

2.1 Computational Constraints 

Edge devices typically have limited processing power 
compared to cloud servers or high-performance 
computing systems. This limitation is particularly 
problematic for deep learning models, which require 
extensive computational resources for both training and 
inference. For instance, convolutional neural networks 
(CNNs) and recurrent neural networks (RNNs) involve 
complex matrix multiplications and large-scale 
computations that can overwhelm the processing 
capabilities of edge devices[5]. 

To address these computational constraints, researchers 
have developed various optimization techniques, such 
as model quantization, which reduces the precision of 
the model's weights and activations, thereby decreasing 
the computational load. Another approach is model 
pruning, which involves removing redundant or less 
important neurons or connections from the network, 
resulting in a smaller and more efficient model. These 
techniques will be discussed in more detail in Section 
4[6]. 
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2.2 Memory Limitations 

Memory is another critical resource that is often limited 
in edge devices. Machine learning models, especially 
deep learning models, can have millions or even billions 
of parameters, requiring significant memory for storage 
and computation. This poses a challenge for edge 
devices with limited RAM and storage capacity[7]. 

One approach to mitigating memory limitations is the 
use of model compression techniques, such as weight 
sharing and low-rank factorization, which reduce the 
memory footprint of the model without significantly 
compromising its performance. Additionally, 
researchers have explored the use of external memory 
or offloading some computations to nearby devices, 
although this approach may introduce latency and 
communication overhead. 

2.3 Energy Efficiency 

Energy efficiency is a paramount concern for edge 
devices, particularly those powered by batteries or 
energy-harvesting mechanisms. Machine learning 
models, especially deep learning models, can be energy-
intensive, leading to rapid battery depletion and reduced 
device lifespan[8]. 

To enhance energy efficiency, researchers have 
developed energy-aware model optimization 
techniques, such as sparsity induction, which 
encourages the model to use fewer active neurons 
during inference, thereby reducing energy consumption. 
Another approach is the use of hardware accelerators, 
such as GPUs, TPUs, and FPGAs, which are designed 
to perform machine learning computations more 
efficiently than general-purpose processors[9]. 

2.4 Real-Time Processing 

Many Edge AI applications, such as autonomous 
driving and real-time video analytics, require low-
latency processing to ensure timely decision-making. 
However, the computational and memory constraints of 
edge devices can introduce delays that are unacceptable 
for real-time applications. 

To achieve real-time processing, researchers have 
focused on developing lightweight models that can 
perform inference quickly without sacrificing accuracy. 
Techniques such as model distillation, where a smaller 
"student" model is trained to mimic the behavior of a 
larger "teacher" model, have been employed to create 
models that are both fast and accurate. Additionally, 
edge devices can leverage parallel processing and 
hardware acceleration to further reduce latency[10]. 

In summary, deploying machine learning models on 
edge devices involves navigating a complex landscape  

 

 

of computational, memory, energy, and latency 
constraints. The next sections will explore how 
traditional and deep learning models have been adapted 
to address these challenges, enabling the successful 
deployment of Edge AI in various applications[11]. 

3. Traditional Machine Learning Models for 

Edge AI 

Traditional machine learning models, such as decision 
trees, support vector machines (SVMs), and k-nearest 
neighbors (KNN), have been widely used in various 
applications due to their simplicity, interpretability, and 
relatively low computational requirements. These 
models are particularly well-suited for resource-
constrained devices, as they typically require less 
memory and computational power compared to deep 
learning models. In this section, we will review some of 
the most commonly used traditional machine learning 
models and discuss their adaptation for Edge AI. 

3.1 Decision Trees 

Decision trees are a type of supervised learning 
algorithm that is used for both classification and 
regression tasks. They work by recursively splitting the 
dataset into subsets based on the value of input features, 
resulting in a tree-like structure where each internal 
node represents a decision based on a feature, and each 
leaf node represents an outcome[12]. 

Decision trees are particularly well-suited for edge 
devices due to their simplicity and low computational 
requirements. They can be trained efficiently even on 
small datasets, and their inference process involves only 
a series of simple comparisons, making them fast and 
energy-efficient. Additionally, decision trees are 
interpretable, which is an important consideration for 
applications where transparency is required. 

However, decision trees can be prone to overfitting, 
especially when the tree is deep and complex. To 
mitigate this issue, techniques such as pruning and 
ensemble methods (e.g., random forests) can be 
employed. Pruning involves removing branches of the 
tree that do not contribute significantly to the model's 
performance, resulting in a simpler and more 
generalizable model. Random forests, on the other hand, 
combine multiple decision trees to improve accuracy 
and reduce overfitting. 

3.2 Support Vector Machines (SVMs) 

Support Vector Machines (SVMs) are another popular 
class of supervised learning models used for 
classification and regression tasks. SVMs work by 
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finding the hyperplane that best separates the data points 
of different classes in a high-dimensional space. The 
goal is to maximize the margin between the hyperplane 
and the nearest data points, known as support 
vectors[13]. 

SVMs are known for their robustness and ability to 
handle high-dimensional data, making them suitable for 
applications such as image classification and text 
analysis. However, the training process of SVMs can be 
computationally intensive, especially for large datasets, 

which may pose a challenge for edge devices with 
limited processing power. 

To adapt SVMs for edge devices, researchers have 
explored various optimization techniques, such as using 
linear kernels instead of non-linear kernels, which 
reduces the computational complexity of the model. 
Additionally, online learning algorithms can be 
employed to update the SVM model incrementally as 
new data arrives, reducing the need for retraining the 
entire model from scratch[14]. 

Table 2: Resource Requirements of Machine Learning Models in Edge AI 

Model Type CPU Usage (%) RAM Usage (MB) Storage (MB) Power Consumption (mW) 
Decision Tree 10 2 1 50 
SVM 20 5 2 100 
KNN 30 10 5 150 
Naive Bayes 5 1 1 25 
Linear Regression 3 1 1 15 
Logistic Regression 5 1 1 20 
CNN (Quantized) 50 50 20 200 
LSTM (Pruned) 40 40 15 180 
MobileBERT 60 60 25 250 
Sparse Autoencoder 35 30 10 150 

 

3.3 k-Nearest Neighbors (KNN) 

k-Nearest Neighbors (KNN) is a simple yet effective 
supervised learning algorithm used for classification 
and regression tasks. KNN works by finding the k 
closest data points (neighbors) to a given input and 
predicting the output based on the majority class (for 
classification) or the average value (for regression) of 
these neighbors[15]. 

KNN is particularly well-suited for edge devices due to 
its simplicity and low computational requirements 
during inference. However, the algorithm's performance 
can be affected by the choice of k and the distance 
metric used to measure the similarity between data 
points. Additionally, KNN requires storing the entire 
training dataset in memory, which can be a limitation 
for edge devices with limited storage capacity. 

To address these challenges, researchers have developed 
techniques such as approximate nearest neighbor 
search, which reduces the computational and memory 
requirements of KNN by approximating the nearest 
neighbors instead of computing them exactly. 
Additionally, feature selection and dimensionality 
reduction techniques can be employed to reduce the size 
of the dataset, making it more manageable for edge 
devices[16]. 

3.4 Naive Bayes 

 

 

Naive Bayes is a probabilistic supervised learning 
algorithm based on Bayes' theorem, which is used for  

classification tasks. The algorithm assumes that the 
features are conditionally independent given the class 
label, which simplifies the computation of the posterior 
probability. 

Naive Bayes is known for its simplicity, efficiency, and 
ability to handle high-dimensional data, making it 
suitable for edge devices. The algorithm requires only a 
small amount of training data to estimate the parameters 
of the model, and its inference process involves simple 
probability calculations, making it fast and energy-
efficient[17]. 

However, the assumption of feature independence may 
not hold in all cases, which can affect the model's 
performance. To mitigate this issue, researchers have 
explored techniques such as feature engineering and 
ensemble methods to improve the accuracy of Naive 
Bayes models. 

3.5 Linear and Logistic Regression 

Linear regression and logistic regression are two of the 
most basic and widely used supervised learning 
algorithms. Linear regression is used for predicting 
continuous outcomes, while logistic regression is used 
for binary classification tasks. 
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Both algorithms are computationally efficient and 
require minimal memory, making them suitable for edge 
devices. The training process involves optimizing the 
model parameters to minimize the loss function, which 
can be done using gradient descent or other optimization 
algorithms. The inference process involves simple 
matrix multiplications and additions, making it fast and 
energy-efficient. 

However, linear and logistic regression models are 
limited in their ability to capture complex relationships 
in the data, especially when the data is non-linear. To 
address this limitation, researchers have explored 
techniques such as feature engineering and polynomial 
regression to enhance the model's expressive power. 

In summary, traditional machine learning models offer 
several advantages for Edge AI, including simplicity, 
interpretability, and low computational requirements. 
However, these models may not always be suitable for 

complex tasks that require capturing intricate patterns in 
the data. The next section will explore how deep 
learning models, which are more powerful but also more 
resource-intensive, have been adapted for edge 
devices[18]. 

4. Deep Learning Models for Edge AI 

Deep learning models, particularly convolutional neural 
networks (CNNs) and recurrent neural networks 
(RNNs), have achieved state-of-the-art performance in 
various tasks, including image recognition, natural 
language processing, and speech recognition. However, 
these models are computationally intensive and require 
substantial memory and energy resources, making them 
challenging to deploy on resource-constrained edge 
devices. In this section, we will review some of the most 
commonly used deep learning models and discuss their 
adaptation for Edge AI[19]. 

 

Table 3: Application Scenarios of Machine Learning Models in Edge AI 

Model Type Application Scenarios 
Decision Tree Fraud detection, medical diagnosis, customer segmentation 

SVM Image classification, text categorization, bioinformatics 
KNN Recommendation systems, anomaly detection, handwriting recognition 

Naive Bayes Spam filtering, sentiment analysis, document classification 
Linear Regression Sales forecasting, risk assessment, energy consumption prediction 

Logistic Regression Credit scoring, churn prediction, disease diagnosis 
CNN (Quantized) Object detection, facial recognition, autonomous driving 
LSTM (Pruned) Speech recognition, language translation, time series forecasting 
MobileBERT Text summarization, question answering, sentiment analysis 

Sparse Autoencoder Anomaly detection, image compression, feature extraction 

 

4.1 Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) are a class of 
deep learning models specifically designed for 
processing grid-like data, such as images. CNNs consist 
of multiple layers, including convolutional layers, 
pooling layers, and fully connected layers. The 
convolutional layers apply filters to the input data to 
extract features, while the pooling layers reduce the 
spatial dimensions of the feature maps, making the 
model more computationally efficient[20]. 

CNNs have achieved remarkable success in image 
classification, object detection, and segmentation tasks. 
However, the computational and memory requirements 
of CNNs can be prohibitive for edge devices. For 
example, popular CNN architectures such as VGGNet 
and ResNet have millions of parameters and require 
billions of floating-point operations (FLOPs) for 
inference. 

To adapt CNNs for edge devices, researchers have 
developed various optimization techniques, including 
model quantization, pruning, and knowledge 
distillation. Model quantization involves reducing the 
precision of the model's weights and activations, which 
can significantly reduce the computational and memory 
requirements without significantly compromising 
accuracy. For example, converting a model from 32-bit 
floating-point to 8-bit integer precision can reduce the 
memory footprint by a factor of four and the 
computational load by a factor of two. 

Model pruning involves removing redundant or less 
important neurons or connections from the network, 
resulting in a smaller and more efficient model[21]. 
Pruning can be done at different levels, including weight 
pruning, neuron pruning, and filter pruning. Weight 
pruning removes individual weights that have little 
impact on the model's output, while neuron pruning 
removes entire neurons that are not contributing 
significantly to the model's performance. Filter pruning, 
on the other hand, removes entire filters from the 
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convolutional layers, reducing the number of feature 
maps and the computational load. 

Knowledge distillation is another technique used to 
create smaller and more efficient models. In this 
approach, a larger "teacher" model is used to train a 
smaller "student" model, which learns to mimic the 
behavior of the teacher model. The student model can 
then be deployed on edge devices, where it can perform 
inference more efficiently than the teacher model[22]. 

4.2 Recurrent Neural Networks (RNNs) 

Recurrent Neural Networks (RNNs) are a class of deep 
learning models designed for processing sequential 
data, such as time series, speech, and text. RNNs have a 
recurrent structure that allows them to maintain a hidden 
state, which captures information about previous time 
steps and influences the model's output at the current 
time step. 

RNNs have been widely used in applications such as 
speech recognition, language modeling, and machine 
translation. However, the recurrent nature of RNNs 
makes them computationally intensive and memory-
hungry, especially for long sequences. Additionally, 
RNNs are prone to the vanishing gradient problem, 
which can make training difficult. 

To adapt RNNs for edge devices, researchers have 
developed various optimization techniques, including 
model quantization, pruning, and the use of more 
efficient RNN variants such as Long Short-Term 
Memory (LSTM) and Gated Recurrent Units (GRUs). 

LSTM and GRU are designed to address the vanishing 
gradient problem by introducing gating mechanisms 
that control the flow of information through the 
network. These gating mechanisms allow the model to 
capture long-term dependencies in the data while 
reducing the computational and memory requirements. 

Model quantization and pruning can also be applied to 
RNNs to reduce their computational and memory 
requirements. For example, quantizing the weights and 
activations of an LSTM model can significantly reduce 
the memory footprint and computational load, making it 
more suitable for edge devices. Similarly, pruning can 
be used to remove redundant neurons or connections 
from the RNN, resulting in a smaller and more efficient 
model. 

4.3 Transformer Models 

Transformer models have recently emerged as a 
powerful alternative to RNNs for processing sequential 
data, particularly in natural language processing tasks. 
Transformers rely on self-attention mechanisms to 
capture relationships between different elements of the 
input sequence, allowing them to model long-range 
dependencies more effectively than RNNs [23]. 

Transformers have achieved state-of-the-art 
performance in tasks such as machine translation, text 
summarization, and language modeling. However, the 
self-attention mechanism is computationally intensive, 
especially for long sequences, making transformers 
challenging to deploy on edge devices[24]. 
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To adapt transformers for edge devices, researchers 
have developed various optimization techniques, 
including model quantization, pruning, and the use of 
more efficient transformer variants such as 
MobileBERT and DistilBERT. MobileBERT is a 
compact version of BERT (Bidirectional Encoder 
Representations from Transformers) that is designed for 
mobile and edge devices. It uses a combination of model 
compression techniques, including quantization and 
pruning, to reduce the model's size and computational 
requirements while maintaining high accuracy. 

DistilBERT, on the other hand, is a smaller and faster 
version of BERT that is trained using knowledge 
distillation. The student model (DistilBERT) learns to 
mimic the behavior of the teacher model (BERT), 
resulting in a model that is more efficient and suitable 
for edge devices. 

4.4 Autoencoders 

Autoencoders are a class of unsupervised learning 
models that are used for dimensionality reduction, 
feature extraction, and data compression. An 
autoencoder consists of an encoder network that maps 
the input data to a lower-dimensional latent space and a 
decoder network that reconstructs the input data from 
the latent representation[25]. 

Autoencoders have been used in various applications, 
including anomaly detection, image denoising, and data 
compression. However, the computational and memory 
requirements of autoencoders can be challenging for 
edge devices, especially when dealing with high-
dimensional data. 

To adapt autoencoders for edge devices, researchers 
have developed various optimization techniques, 
including model quantization, pruning, and the use of 
more efficient autoencoder variants such as variational 
autoencoders (VAEs) and sparse autoencoders. VAEs 
introduce a probabilistic framework that allows the 
model to generate new data samples from the latent 
space, making them suitable for applications such as 
image generation and data augmentation. Sparse 
autoencoders, on the other hand, encourage the model to 
use only a small number of active neurons in the latent 
space, resulting in a more compact and efficient 
model[26]. 

In summary, deep learning models offer significant 
advantages in terms of performance and accuracy, but 
their computational and memory requirements can be 
challenging for edge devices. To address these 
challenges, researchers have developed various 

optimization techniques, including model quantization, 
pruning, and knowledge distillation, which enable the  

 

 

deployment of deep learning models on resource-
constrained devices. The next section will present three 
detailed tables summarizing the performance and 
resource requirements of various machine learning 
models in Edge AI[27]. 

5. Performance and Resource Requirements of 

Machine Learning Models in Edge AI 

In this section, we present three detailed tables 
summarizing the performance metrics, resource 
requirements, and application scenarios of various 
machine learning models in Edge AI. These tables 
provide a comprehensive overview of the trade-offs 
involved in deploying different types of machine 
learning models on edge devices and offer insights into 
selecting the appropriate model for specific 
applications. 

6. Application Scenarios and Case Studies of 

Edge AI 

Edge AI has found applications in a wide range of 
domains, including healthcare, industrial automation, 
smart cities, and autonomous vehicles. In this section, 
we will explore some of the most prominent application 
scenarios and case studies of Edge AI, highlighting the 
role of machine learning models in enabling real-time 
decision-making and data processing at the edge[28]. 

6.1 Healthcare 

In the healthcare domain, Edge AI is being used to 
enable real-time monitoring and diagnosis of patients, 
particularly in remote and resource-constrained settings. 
For example, wearable devices equipped with Edge AI 
capabilities can continuously monitor vital signs such as 
heart rate, blood pressure, and oxygen levels, and alert 
healthcare providers in case of anomalies. 

One notable case study is the use of Edge AI for early 
detection of cardiovascular diseases. In this application, 
a lightweight CNN model is deployed on a wearable 
device to analyze electrocardiogram (ECG) signals in 
real-time. The model is trained to detect abnormal 
patterns in the ECG signals that may indicate the onset 
of a heart attack or other cardiovascular conditions. By 
processing the data locally on the device, the system can 
provide immediate feedback to the user and healthcare 
providers, reducing the time to diagnosis and treatment. 
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Another application of Edge AI in healthcare is the use 
of machine learning models for medical imaging. For 
example, a quantized CNN model can be deployed on a 
portable ultrasound device to analyze images in real-
time and detect abnormalities such as tumors or 
fractures [29]. This approach enables healthcare 
providers to perform diagnostic imaging in remote or 
underserved areas, where access to advanced medical 
equipment and expertise may be limited. 

6.2 Industrial Automation 

In the industrial automation domain, Edge AI is being 
used to enable real-time monitoring and control of 
manufacturing processes, improving efficiency, and 
reducing downtime. For example, machine learning 
models can be deployed on edge devices to monitor the 
condition of machinery and predict potential failures 
before they occur[30]. 

One case study involves the use of Edge AI for 
predictive maintenance in a manufacturing plant. In this 
application, a pruned LSTM model is deployed on an 
edge device to analyze sensor data from industrial 
equipment, such as temperature, vibration, and pressure. 
The model is trained to detect patterns in the sensor data 
that may indicate impending equipment failure. By 
predicting failures in advance, the system can schedule 
maintenance activities proactively, reducing downtime 
and minimizing the risk of costly equipment 
breakdowns. 

Another application of Edge AI in industrial automation 
is the use of machine learning models for quality 
control. For example, a quantized CNN model can be 
deployed on a vision system to inspect products on a 
production line in real-time. The model is trained to 
detect defects such as cracks, scratches, or 
misalignments, and classify products as pass or fail. By 
performing quality control at the edge, the system can 
reduce the need for manual inspection and improve the 
overall efficiency of the production process [31]. 

6.3 Smart Cities 

In the context of smart cities, Edge AI is being used to 
enable real-time monitoring and management of urban 
infrastructure, such as traffic, energy, and waste 
management systems. For example, machine learning 
models can be deployed on edge devices to analyze data 
from sensors and cameras, and optimize the operation of 
city services[32]. 

One notable case study is the use of Edge AI for traffic 
management in a smart city. In this application, a 
lightweight decision tree model is deployed on traffic 
cameras to analyze vehicle flow and detect congestion 
in real-time. The model is trained to predict traffic 
patterns and optimize the timing of traffic signals to 
reduce congestion and improve traffic flow. By 

processing the data locally on the cameras, the system 
can respond to changing traffic conditions in real-time, 
without the need for centralized processing[33]. 

Another application of Edge AI in smart cities is the use 
of machine learning models for energy management. 
For example, a sparse autoencoder model can be 
deployed on smart meters to analyze energy 
consumption patterns and predict peak demand. The 
model is trained to identify patterns in the energy 
consumption data and optimize the distribution of 
energy resources to reduce costs and improve 
efficiency. By performing energy management at the 
edge, the system can respond to changes in energy 
demand in real-time, without the need for centralized 
control. 

6.4 Autonomous Vehicles 

In the domain of autonomous vehicles, Edge AI is being 
used to enable real-time perception, decision-making, 
and control, ensuring the safety and reliability of self-
driving cars. For example, machine learning models can 
be deployed on edge devices to analyze data from 
sensors such as cameras, LiDAR, and radar, and make 
driving decisions in real-time[34]. 

One case study involves the use of Edge AI for object 
detection and tracking in autonomous vehicles. In this 
application, a quantized CNN model is deployed on an 
onboard computer to analyze video feeds from cameras 
and detect objects such as pedestrians, vehicles, and 
traffic signs. The model is trained to classify objects and 
predict their trajectories, enabling the vehicle to make 
informed driving decisions. By processing the data 
locally on the vehicle, the system can respond to 
changing road conditions in real-time, without the need 
for cloud connectivity. 

Another application of Edge AI in autonomous vehicles 
is the use of machine learning models for path planning 
and control. For example, a pruned LSTM model can be 
deployed on an onboard computer to analyze sensor data 
and predict the optimal path for the vehicle to follow. 
The model is trained to consider factors such as road 
conditions, traffic, and obstacles, and generate a safe 
and efficient driving path. By performing path planning 
and control at the edge, the system can ensure the safety 
and reliability of the autonomous vehicle, even in 
complex and dynamic environments[35]. 

In summary, Edge AI is being used in a wide range of 
application scenarios, from healthcare and industrial 
automation to smart cities and autonomous vehicles. 
The deployment of machine learning models on edge 
devices enables real-time decision-making and data 
processing, improving efficiency, reducing latency, and 
enhancing the overall performance of these systems. 
The next section will conclude the article with future 
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research directions and potential advancements in the 
field. 

7. Conclusion and Future Research Directions 

Edge AI represents a transformative paradigm that 
brings the power of artificial intelligence to the edge of 
the network, enabling real-time data processing and 
decision-making on resource-constrained devices. This 
article has provided a comprehensive review of machine 
learning models tailored for Edge AI, covering both 
traditional and deep learning models, and discussing 
their adaptation for edge environments. We have 
explored the challenges associated with deploying 
machine learning models on edge devices, including 
computational constraints, memory limitations, energy 
efficiency, and the need for real-time processing. 
Additionally, we have presented three detailed tables 
summarizing the performance metrics, resource 
requirements, and application scenarios of various 
machine learning models in Edge AI. 

Despite the significant progress made in the field of 
Edge AI, several challenges remain that warrant further 
research. One of the key challenges is the development 
of more efficient machine learning models that can 
deliver high performance while operating within the 
constraints of edge devices. This includes the 
exploration of novel model architectures, optimization 
techniques, and hardware accelerators that can enhance 
the efficiency of machine learning models on edge 
devices. 

Another important research direction is the development 
of techniques for federated learning and edge-to-cloud 
collaboration, which can enable the training of machine 
learning models on distributed edge devices while 
preserving data privacy and security. Federated learning 
allows multiple edge devices to collaboratively train a 
shared model without sharing their raw data, making it 
suitable for applications where data privacy is a concern. 
Edge-to-cloud collaboration, on the other hand, involves 
offloading some computations to the cloud while 
keeping the majority of the processing on the edge, 
enabling a balance between performance and resource 
utilization. 

Furthermore, the integration of Edge AI with other 
emerging technologies, such as 5G, blockchain, and 
edge computing, presents new opportunities for 
innovation. For example, the high-speed and low-
latency connectivity offered by 5G networks can 
enhance the capabilities of Edge AI by enabling real-
time communication and coordination between edge 
devices. Blockchain technology can be used to ensure 
the integrity and security of data processed by Edge AI 
systems, particularly in applications such as healthcare 
and finance. Edge computing, on the other hand, can 

provide the necessary infrastructure for deploying and 
managing Edge AI applications at scale. 

In conclusion, Edge AI is a rapidly evolving field with 
immense potential to transform various industries and 
domains. The development of efficient and scalable 
machine learning models for resource-constrained 
devices is crucial for realizing the full potential of Edge 
AI. As researchers continue to explore new techniques 
and technologies, we can expect to see significant 
advancements in the field, enabling the deployment of 
Edge AI in a wide range of applications and unlocking 
new opportunities for innovation and growth[36]. 
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