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 This study presents a comprehensive quantitative assessment framework for 
evaluating regional carbon neutrality policy synergies using deep learning 
techniques. The research addresses the critical challenge of understanding 
complex interactions between multiple policy instruments in achieving carbon 
reduction goals. By working with neural network architectures and relevant 
tools, performance patterns, successes, and new management. The course 
indicates synergy index (psi) for providing the intervention that affects the 
impact of energy voluntarily than 1.17 for 1.71). Analysis of regional variations 
demonstrates that policy effectiveness is strongly influenced by local economic 
structures and energy systems, with manufacturing-dominated regions 
showing the highest responsiveness to carbon pricing mechanisms (PSI = 
1.62). Temporal analysis indicates a typical 2-3 year lag before synergistic 
effects fully manifest. The deep learning model achieves robust prediction 
accuracy across diverse scenarios, with sensitivity analysis revealing 
technology learning rates as the most significant parameter influencing 
predictions (±24.3%). These findings provide approval to law enforcement 
officials of local structures, determination of local people and behavioural  
status of customary strategies. 

1. Introduction 

1.1. Background of Regional Carbon Neutrality 

Goals 

Safety changes have been developed as a global 
opponents need immediate care and cooperation. The 
idea of carbon affected, that achieve carbon dioxide with 
removal or removal, increased keywords. Follow the 
pari Agreement, countries around the world have 
created carbon purposes. Purpose Representatives to the 
National National and Carbon Women. This area is very 
important because they can be developed to see that 
there are specialized procedures, industrial standards, 
and resources. 

Regional carbon neutrality targets are faced with 
realization challenges due to economic development, 
industrial structures and funding for natural resources in 
different areas. In recent years, decision makers have 
acknowledged that the achievement of carbon neutrality 
requires a comprehensive approach that involves several 

sectors and various political toolsError! Reference source not 

found.. The complexity is increasing when considering a 
variety of stakeholders, which range from state 
communities to companies and communities. 
Coordination of these different elements requires solid 
evaluation tools that can evaluate the effectiveness of 
different policy combinations. 

The achievement of carbon neutrality goals is naturally 
related to the change in the energy system. Like Xu et 
al. (2023), Carbon neutrality calculated cost 
optimization in financial transmission is associated with 
complex decision making processes, especially when 
considering carbon capturing power plants in intelligent 
grid environmentsError! Reference source not found.. The 
challenge is strengthened by dealing with random issues 
such as wind power related to renewable energy sources. 
Their research shows that it is important to optimize 
both running costs and carbon dioxide emissions with 
the help of wind power designed for carbon dioxide 
capture facilities. 
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1.2. Challenges in Policy Assessment and 

Coordination 

The evaluation of carbon neutrality policy poses a 
number of significant challenges. One important issue is 
to quantify the impact of politics in different fields and 
schedules. Traditional evaluation methods often 
struggle to capture the dynamic relationships of 
economic operation, energy consumption and carbon 
dioxide emissions. Interaction between different 
policies can lead to synergistic effects or potential 
conflicts that are difficult to predict through 
conventional analytical methods. 

Another challenge lies in the coordination of multiple 
policy instruments targeting different aspects of carbon 
neutrality. Liu et al. (2023) emphasized this complexity 
in their research on equilibrium analysis for electricity 
markets considering carbon emission tradingError! 

Reference source not found.. They demonstrated that carbon 
pricing mechanisms significantly influence market 
equilibrium and that an appropriate carbon emission 
quota setting is crucial for effective carbon emission 
reduction. Their work underscores the importance of 
understanding how different policy instruments interact 
within market frameworks. 

The availability and quality of information represent 
extra barriers to policy assessment. The evaluation of 
carbon neutrality policy requires comprehensive troops 
that cover financial indicators, energy consumption 
models, technology deployment rates and emission 
levelsError! Reference source not found.. These data points are 
often scattered from different sources, collected at 
variable frequencies and may contain inconsistencies or 
openings. In addition, the long-term nature of carbon 
neutrality targets requires forecast properties that may 
take into account technological progress, behavioural 
changes and long periods of market dynamics. 

The regional dimension adds complexity to policy 
assessment. Different regions have unique 
characteristics affecting their carbon emission profiles 
and reduction potentials. Alabi et al. (2024) 
demonstrated this complexity in their research on 
prioritized replay-safe soft-actor critic deep 
reinforcement learning for energy dispatch in integrated 
energy systemsError! Reference source not found.. Their work 
highlights how multiple energy sources, converters, and 
loads must be optimized simultaneously while 
addressing nonconvexity, uncertainty, and system 
dynamics challenges. 

1.3. The Role of Deep Learning in Policy 

Assessment 

Deep learning techniques provide promising solutions 
to deal with the complexities of carbon neutrality policy 
assessment. Their ability to identify models and 

relationships in large, multi-dimensional data makes 
them particularly suitable for modelling interactions 
between different policies and their effects on carbon 
dioxide emissions. Deep Verification Learning (DRL) 
represents an effective approach to optimizing decision-
making processes in complex environments. Xin et al. 
(2024) showed the application of DRL to regional dual 
coat goals and path designError! Reference source not found.. 
Their research developed carbon dioxide emissions 
based on Markov decision-making processes and energy 
consumption forecasts that are affected by population 
and economic changes. The results showed that 
comprehensive measures to improve energy efficiency, 
upgrade industrial technology and improve energy 
sources carbon dioxide emissions effectively promote 
regional carbon neutrality objectives. 

Neuronal networks can capture non-linear relationships 
between political measures and the results that 
traditional analytical methods can be forgotten. This 
ability is particularly valuable in assessing the 
synergistic effects of several policies implemented 
simultaneously. Deep learning models adapt to them to 
include different types of information, including 
financial indicators, energy consumption models, 
technological parameters and emission measurements. 

Migration learning properties allow information sharing 
between different regional situations, which may 
improve the generalization of policy assessments. This 
feature is particularly valuable when data availability 
varies in areas or trying to apply lessons from one area 
to another with similar properties. 

Deep learning models can be constantly updated when 
new information is available, allowing for real-time 
monitoring and policy efficiency assessment. This 
iterative approach to policy evaluation allows decision-
makers to make correct changes based on rising trends 
and feedback loops. 

1.4. Research Objectives 

This research aims to develop a quantitative framework 
for assessing the synergistic effects of regional carbon 
neutrality policies using deep learning techniques. The 
purpose of the study is to deal with restrictions on 
traditional policy assessment methods by utilizing the 
identification and predictive abilities of the nerve 
networks. By analyzing the interaction between 
different political tools, the research aims to identify 
optimal political combinations that maximize carbon 
reduction by minimizing economic disorders. 

The study will utilize deep learning models to analyze 
historical data on policy implementations and their 
outcomes across various regions. Through this analysis, 
the research aims to identify patterns and relationships 
that can inform future policy design and 
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implementation. Models are trained to predict the 
effects of various political combinations on carbon 
dioxide emissions, economic indicators and energy 
consumption models. 

The key objective is to develop a generalized frame that 
can be applied in different regional situations, 
recognizing the unique features and challenges of each 
area. The study explores how regional variations in 
economic structure, energy blend and natural resources 
affect the effectiveness of different political 
combinations. As shown by Ramu et al. (2024), 
technological innovations like artificial intelligence can 
transform traditional approaches to recruitment 
processes, suggesting similar transformative potential in 
policy assessment domainsError! Reference source not found.. The 
study also aims to provide decision-makers with 
practical tools and insights into the design and 
implementation of efficient carbon neutrality strategies. 
By determining the synergistic effects of different 
political combinations, the study helps decision-makers 
prioritize interventions that provide the greatest 
potential for carbon reduction with the least economic 
effects. The ultimate goal is to accelerate progress 
towards regional carbon neutrality by enabling more 
conscious and effective political decisions. 

2. Literature Review 

2.1. Regional Carbon Neutrality Policies and 

Frameworks 

Regional carbon neutrality policies have evolved 
significantly in response to the effects of climate change 
on increased concerns. These policies cover a wide 
range of tools, including carbon pricing mechanisms, 
renewable energy mandates, energy efficiency 
standards and technological innovation support. The 
formulation and implementation of regional carbon 
dioxide neutrality frames are related to several 
stakeholders and requires careful consideration of local 
economic conditions, energy systems and emission 
profiles. Carbon pricing mechanisms represent the 
fundamental component of many regional carbon 
dioxins. Liu et al. (2023) carried out an equilibrium 
analysis of the electricity market, which included carbon 
dioxide emissions, revealing that carbon pricing has a 
significant impact on market dynamicsError! Reference source 

not found.. Their research demonstrated that excessive 
carbon prices can increase nodal electricity prices while 
negatively affecting emission reduction efforts. 
Conversely, they found that appropriately calibrated 
carbon emission quotas effectively promote carbon 
reduction. The study utilized multi-agent deep 
reinforcement learning to analyze these complex market 
interactions, offering valuable insights into the 
economic implications of carbon pricing policies. 

Technological transformation policies constitute 
another critical element of regional carbon neutrality 
frameworks. Xu et al. (2023) investigated the 
integration of carbon capture technologies with 
renewable energy sources in smart grid 
environmentsError! Reference source not found.. Their research 
highlighted the importance of computational cost 
optimization for economic dispatch when combining 
carbon capture power plants with intermittent renewable 
energy sources. The study introduced a framework 
utilizing deep neural networks to identify active 
constraints and optimize dispatching strategies, 
demonstrating how technological policies can 
simultaneously address carbon emissions and grid 
stability challengesError! Reference source not found.. 

Regional variations in carbon neutrality policy reflect 
differences in resource funds, economic structures and 
development priorities. These variations require tailor-
made approaches to plan and implement politics. The 
effectiveness of carbon neutrality policy depends on its 
alignment with local conditions and integration with 
broader regional development strategiesError! Reference 

source not found.. Coordinating multi-level administrative 
structures are essential to ensure the consistency of 
politics at different administrative levels and to avoid 
potential conflicts or redundancies. 

2.2. Quantitative Methods for Policy Assessment 

Quantitative methods for carbon neutrality policy 
assessment have advanced considerably, moving 
beyond simple accounting approaches to incorporate 
sophisticated modelling techniques. The purpose of 
these methods is to capture a complex interaction 
between economic function, energy systems and carbon 
dioxide emissions. Developing strong quantitative 
evaluation frames is crucial to evaluating political 
efficiency and guiding future policy planning. 
Equilibrium models provide valuable insights into the 
economic impacts of carbon neutrality policies. Liu et 
al. (2023) applied a bi-level problem formulation to 
model electricity market equilibrium with strategic 
generation company bidders, considering carbon 
emission trading mechanismsError! Reference source not found.. 
Their approach incorporated upper-level profit 
maximization objectives for generation companies and 
lower-level market-clearing models to minimize total 
generation costs. Balance analysis revealed important 
interaction between carbon prices, market offer 
strategies and emissions results, showing a balance in 
the use of modelling 

for policy assessment. Simulation-based methods 
enable the study of various political scenarios and their 
potential effects. Xin et al. (2024) developed several 
scenario analysis models, including a carbon dioxide 
emission model based on Markov decision-making 
processes, and an impacting energy consumption 
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forecast for demographic and economic factorsError! 

Reference source not found.. Their approach allowed for the 
comparative assessment of different policy pathways 
toward regional carbon neutrality goals, highlighting the 
effectiveness of comprehensive measures addressing 
energy efficiency, industrial technology upgrades, and 
energy source decarbonization. 

Optimization techniques constitute another important 
class of quantitative methods for policy assessment. 
Alabi et al. (2024) proposed a deep reinforcement 
learning approach for real-time energy dispatch in 
integrated energy systems, addressing challenges 
related to nonconvexity, uncertainty, and system 
dynamicsError! Reference source not found.. Their prioritized 
replay safe soft-actor critic algorithm incorporated 
safety networks and prioritized experience replay 
mechanisms to improve performance while respecting 
physical constraints. This research demonstrates how 
optimization methods can enhance the operational 
efficiency of energy systems while supporting carbon 
reduction objectives. 

2.3. Artificial Intelligence in Energy and 

Environmental Policy 

Artificial intelligence applications in energy and 
environmental policy analysis have grown substantially, 
offering new capabilities for handling complex data and 
modelling intricate system behaviours. Machine 
learning techniques provide powerful tools for pattern 
recognition, prediction, and optimization in policy 
assessment contexts. The integration of AI with 
traditional analytical approaches enhances the depth and 
breadth of policy evaluations. 

Deep reinforcement learning has emerged as a 
promising approach for addressing complex decision-
making problems in energy systems. Alabi et al. (2024) 
demonstrated the effectiveness of DRL for real-time 
energy dispatch in integrated energy systems with 
carbon capture capabilitiesError! Reference source not found.. 
Their approach utilized a safety network to ensure that 
control actions respected physical constraints while a 
prioritized experience replay mechanism enhanced 
sampling efficiency and convergence speed. The 
performance of their DRL agent approached that of 
theoretical optimization models while maintaining 
computational efficiency for real-time applications. 

Neural networks offer capabilities for modelling non-
linear relationships in policy assessment frameworks. 
Xu et al. (2023) employed deep neural networks to 
describe relationships between user loads and 
constraints in security-constrained economic dispatch 
problemsError! Reference source not found.. This application 
significantly decreased problem scale and enabled quick 
determination of optimal dispatching strategies. The 
study highlighted the potential of neural networks for 

computational cost reduction in complex energy system 
optimization problems with carbon emission 
considerations. 

Transfer learning techniques facilitate knowledge 
sharing across different policy contexts, enhancing the 
generalizability of assessment models. Ramu et al. 
(2024) discussed how AI technologies transform 
traditional processes across various domains, suggesting 
potential applications in policy assessmentError! Reference 

source not found.. The adaptability of AI methods allows for 
continuous learning and improvement as new data 
becomes available, making them particularly valuable 
for long-term policy evaluation. 

2.4. Policy Synergy Evaluation Approaches 

Policy synergy evaluation approaches aim to assess how 
different policy instruments interact and potentially 
reinforce or counteract each other. Understanding these 
synergistic effects is crucial for designing effective 
policy portfolios that maximize carbon reduction while 
minimizing economic disruptions. Various 
methodologies have been developed to quantify and 
analyze policy synergies in the context of carbon 
neutrality goals. 

Integrated assessment models provide comprehensive 
frameworks for evaluating policy synergies across 
different sectors and timeframes. Xin et al. (2024) 
applied such an approach to examine how combinations 
of energy efficiency improvements, industrial 
technology upgrades, and energy source 
decarbonization measures could collectively advance 
regional carbon neutrality goalsError! Reference source not found.. 
Their analysis captured the reinforcing effects between 
these different policy types, demonstrating how 
integrated assessment can reveal synergistic benefits 
that might be overlooked when evaluating policies in 
isolation. 

Multi-objective optimization techniques offer another 
approach for evaluating policy synergies by explicitly 
considering trade-offs between different objectives. 
Alabi et al. (2024) addressed the trade-off between 
economic cost and carbon emission reduction in their 
integrated energy system model, demonstrating how 
optimization frameworks can identify solutions that 
balance multiple policy objectivesError! Reference source not 

found.. Their approach incorporated physical constraints 
and operational requirements while seeking optimal 
dispatch strategies, illustrating how complex system 
interactions can be captured within optimization 
frameworks. 

Agent-based modelling approaches enable the 
exploration of emergent synergistic effects arising from 
the behaviours and interactions of multiple actors. Liu 
et al. (2023) utilized multi-agent deep reinforcement 
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learning to analyze how different market participants 
respond to carbon pricing policies in electricity 
marketsError! Reference source not found.. Their research 
revealed important insights into the collective outcomes 
of individual strategic behaviours under various policy 
scenarios, highlighting the utility of agent-based 
approaches for understanding complex system 
dynamics and policy synergiesError! Reference source not found.. 
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3. Methodology and Data 

3.1. Theoretical Framework for Policy Synergy 

Assessment 

The theoretical framework for assessing policy 
synergies in regional carbon neutrality contexts 
integrates elements from systems dynamics, economic 
equilibrium theory, and environmental impact 
assessment. This research conceptualizes policy 

synergies as emergent properties arising from 
interactions between different policy instruments across 
multiple sectors and timeframes. 

The framework distinguishes between three types of 
policy synergies: reinforcing synergies (where policies 
mutually enhance effectiveness), counteracting effects 
(where policies work against each other), and neutral 
interactionsError! Reference source not found.. Table 1 presents 
the typology of policy synergies considered in this 
study. 

Table 1: Typology of Policy Synergies for Carbon Neutrality Assessment 

Synergy 

Type 
Definition 

Interaction 

Mechanism 

Assessment 

Metrics 
Key Parameters 

Reinforcing 
Policies enhance mutual 

effectiveness 

Positive feedback 

loops 

Synergy coefficient 

> 1 

Time lag, magnitude, 

persistence 

Counteracting 
Policies diminish mutual 

effectiveness 

Negative feedback 

loops 

Synergy coefficient 

< 1 

Conflict severity, scope, 

duration 

Neutral 
No significant interaction 

effects 

Independent 

pathways 

Synergy coefficient 

≈ 1 

Stability conditions, 

contextual factors 

Catalytic 
One policy enables 

another 
Threshold effects 

Non-linear 

response curves 

Activation thresholds, 

sequence sensitivity 

Conditional 
Synergy depends on 

specific conditions 

Context-dependent 

mechanisms 

Variable 

coefficients 

Boundary conditions, 

enabling factors 

The mathematical formulation of policy synergies 
follows the approach proposed by Xin et al. (2024), 
where the synergy coefficient (SC) between two policies 
i and j is expressed as: 

SC(i,j) = E(i+j) / [E(i) + E(j)] 

Where E(i+j) represents the emission reduction 
achieved when both policies are implemented 
simultaneously, while E(i) and E(j) denote emission 
reductions from individual policy implementations. 

3.2. Deep Learning Model Architecture 

The deep learning architecture developed for this study 
incorporates multiple specialized components designed 
to capture complex relationships between policy 
instruments and carbon reduction outcomes. The model 
architecture draws inspiration from approaches 
demonstrated by Alabi et al. (2024) and Liu et al. (2023) 
while introducing novel elements tailored to policy 
synergy assessmentError! Reference source not found.. 

The core model consists of a hybrid network combining 
recurrent neural networks (RNNs) for temporal 
dependence modelling with graph neural networks 
(GNNs) for capturing inter-sectoral policy interactions. 
Table 2 details the architectural components of the deep 
learning model. 

Table 2: Deep Learning Model Architecture Specifications 



 

Journal of Advanced Computing Systems (JACS)  ISSN: 3066-3962 

 

Vol. 4(10), pp. 38-54, October 2024  

[44] 

Component Layer Type Units/Filters 
Activation 

Function 
Regularization 

Input 

Dimensions 

Output 

Dimensions 

Temporal 

Encoder 
LSTM 128 tanh Dropout (0.3) 

[time_steps, 

features] 
[128] 

Sectoral 

Encoder 

Graph 

Convolutional 
64 ReLU L2 (0.01) 

[sectors, 

features] 
[sectors, 64] 

Policy 

Interaction 

Module 

Self-Attention 8 heads Softmax 
Layer 

Normalization 
[policies, 64] [policies, 64] 

Synergy 

Decoder 
Dense 

256 → 128 

→ 64 
LeakyReLU 

Batch 

Normalization 
[256] [64] 

Output Layer Dense Variable Linear - [64] [synergy_metrics] 

Figure 1 illustrates the overall architecture of the deep learning model, highlighting information flow between different 
components. 

Figure 1: Deep Learning Architecture for Policy Synergy Assessment 

 

The figure depicts a complex neural network 
architecture with multiple interconnected components. 
The architecture features a hierarchical structure with 
input layers processing policy parameters, economic 

indicators, and emission data. These inputs feed into 
specialized encoding modules including temporal 
encoders (LSTM units) and sectoral encoders (graph 
convolutional networks). The centre contains a policy 
interaction module implemented as a multi-head self-
attention mechanism that captures relationships 
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between different policies. The upper sections include 
synergy decoders consisting of dense layers with batch 
normalization, leading to output layers that predict 
various synergy metrics. 

3.3. Data Collection and Preprocessing 

This study utilizes a comprehensive dataset 
encompassing multiple dimensions relevant to regional 
carbon neutrality policy assessment. Data was collected 
across four key domains: policy implementations, 
economic indicators, energy system parameters, and 

carbon emissions from government databases, 
international organizations, research institutions, and 
industry reports. 

The temporal scope covers 2000 to 2023, providing a 
historical perspective on policy implementations and 
outcomes. The spatial scope includes multiple regions 
with varying economic structures, energy systems, and 
policy approaches. Table 3 summarizes the key datasets 
used. 

Table 3: Primary Datasets Used in the Study 

Dataset Source 
Temporal 

Coverage 
Spatial Resolution Key Variables 

Update 

Frequency 

Carbon Emission 

Inventory 

National 

Environmental 

Agencies 

2000-2023 Regional 
CO2, CH4, N2O 

emissions by sector 
Annual 

Energy 

Consumption 

International 

Energy Agency 
2000-2023 Regional/Provincial 

Energy use by 

source and sector 
Quarterly 

Economic 

Indicators 

National Bureau of 

Statistics 
2000-2023 Provincial 

GDP, industrial 

output, 

employment 

Quarterly 

Policy 

Implementation 

Records 

Government Policy 

Databases 
2000-2023 Regional 

Policy type, 

timing, scope, 

intensity 

Continuous 

Data preprocessing involved several steps to ensure 
quality, consistency, and compatibility with the deep 
learning framework. Missing values were addressed 
using multiple imputation techniques. Temporal 
alignment was performed to synchronize datasets with 
different reporting frequencies. Variable normalization 
employed a sector-specific approach to account for 
different scales and distributions. 

3.4. Model Training and Validation Process 

The model training process employed a multi-stage 
approach designed to address challenges associated with 

complex policy interactions and limited historical data. 
The training utilized a combination of supervised 
learning with labelled historical outcomes and semi-
supervised techniques leveraging domain knowledge 
for scenarios with insufficient empirical data. 

The dataset was partitioned into training (70%), 
validation (15%), and testing (15%) sets using stratified 
sampling to ensure representative distribution of 
different policy combinations across all partitions. 
Table 4 presents the hyperparameters used during model 
training. 

Table 4: Model Training Hyperparameters and Optimization 

Hyperparameter Value/Range Selection Method Final Value Sensitivity 
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Learning Rate 1e-5 - 1e-3 Grid Search 5e-4 High 

Batch Size 32 - 256 Random Search 128 Medium 

Dropout Rate 0.1 - 0.5 Bayesian Optimization 0.3 Medium 

L2 Regularization 1e-4 - 1e-2 Grid Search 1e-3 Low 

LSTM Units 64 - 256 Random Search 128 High 

Training Epochs 100 - 500 Early Stopping 324 - 

The training process incorporated several techniques to 
enhance model robustness and prevent overfitting, 
including early stopping, gradient clipping, and learning 
rate scheduling with cosine annealing. Data 
augmentation techniques, including policy parameter 
perturbation and synthetic scenario generation, were 
employed to expand the effective training dataset size. 

3.5. Policy Synergy Evaluation Metrics 

The evaluation of policy synergies requires specialized 
metrics capable of capturing various dimensions of 
interaction effects. This study employs a comprehensive 
set of evaluation metrics designed to assess different 
aspects of policy synergies, including magnitude, 
persistence, robustness, and economic implications. 

The primary evaluation metric is the Policy Synergy 

Index (PSI), calculated as: 

PSI = (ΔE_combined / (ΔE_1 + ΔE_2 + ... + ΔE_n)) × 
(1 - σ/μ) 

Where ΔE_combined represents emission reduction 
achieved by the combined implementation of all 
policies, ΔE_i denotes emission reduction from the 
individual policy I, σ is the standard deviation of 
emission reductions across different implementation 
scenarios, and μ is the mean emission reduction. 

Figure 2 provides a visualization of the relationship 
between different policy combinations and their 
corresponding PSI values. 

Figure 2: Policy Synergy Index Across Different Policy Combinations 
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The figure presents a heat map visualization showing 
the Policy Synergy Index values for different policy 
combination pairs. The x and y axes represent individual 
policy types (carbon pricing, renewable subsidies, 
efficiency standards, etc.), while the colour 

intensity indicates the magnitude of synergy, with 
darker colours representing stronger synergistic effects. 
The visualization includes clustering of similar policy 
types and annotations highlighting particularly strong or 
weak synergy pairs. Small line charts surrounding the 

main heat map show temporal trends of selected policy 
combinations. 

4. Results and Analysis 

4.1. Baseline Performance of Individual Policies 

The baseline performance evaluation of individual 
carbon neutrality policies provides essential insights 
into their effectiveness. Table 6 presents the 
performance metrics for five major policy categories 
implemented across the studied regions. 

Table 6: Baseline Performance of Individual Carbon Neutrality Policies 

Policy 

Category 

Average Carbon Reduction 

(Mt CO₂-eq/year) 

Cost-Effectiveness 

($/t CO₂-eq) 

Implementation 

Rate (%) 

GDP Impact (% 

change) 

Carbon Pricing 12.47 ± 2.31 58.63 ± 8.92 84.6 -0.18 to +0.05 

Renewable 

Subsidies 
9.82 ± 1.76 72.15 ± 10.23 91.2 +0.12 to +0.28 

Efficiency 

Standards 
7.53 ± 1.49 45.29 ± 6.84 76.5 +0.08 to +0.31 

Innovation 

Support 
4.18 ± 0.94 96.74 ± 15.32 68.9 +0.24 to +0.52 

Regulatory 

Measures 
8.65 ± 1.82 51.37 ± 7.45 89.3 -0.06 to +0.14 

The data reveals significant variations in performance 
metrics across policy categories. Carbon pricing 
mechanisms demonstrate the highest average carbon 
reduction potential at 12.47 Mt CO₂-eq/year, which 
aligns with the findings of Liu et al. (2023) regarding 
the effectiveness of carbon pricing in electricity 
marketsError! Reference source not found.. Energy efficiency 
standards exhibit the most favourable 

cost-effectiveness ratio at 45.29 $/t CO₂-eq. 

Figure 3 illustrates the distribution of carbon reduction 
potential across different economic sectors for each 
policy category. 

Figure 3: Sectoral Distribution of Carbon Reduction by Policy Category 
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The figure presents a multi-panel visualization showing 
how different policy categories affect carbon emissions 
across economic sectors. The main panel features a 
stacked bar chart where the x-axis represents the five 
policy categories and the y-axis shows carbon reduction 
in Mt CO₂-eq/year. Each bar is segmented to show 
contributions from different sectors (power generation, 
industry, buildings, transportation, and agriculture) with 
distinct colour coding. 

The visualization reveals that carbon pricing has the 
most balanced impact across sectors, while renewable 
subsidies predominantly affect the power generation 
sector. Energy efficiency standards show significant 
impacts in both the buildings and industrial sectors. 

4.2. Quantification of Policy Synergy Effects 

The quantification of policy synergy effects reveals 
complex interaction patterns between different policy 
instruments. Table 7 presents the Policy Synergy Index 
(PSI) values for various policy combinations. 

Table 7: Policy Synergy Index (PSI) for Various Policy Combinations 

Policy Combination PSI Value Synergy Classification 
Carbon Reduction Enhancement 

(%) 

Carbon Pricing + Renewable Subsidies 
1.38 ± 

0.14 
Strongly Reinforcing +38.2 

Carbon Pricing + Efficiency Standards 
1.25 ± 

0.11 
Moderately Reinforcing +24.8 

Renewable Subsidies + Innovation 

Support 

1.42 ± 

0.16 
Strongly Reinforcing +41.6 

Efficiency Standards + Regulatory 

Measures 

1.17 ± 

0.09 
Weakly Reinforcing +16.9 
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Three-Policy Combination 

(CP+RS+ES) 

1.56 ± 

0.18 

Very Strongly 

Reinforcing 
+55.7 

All Five Policies Combined 
1.71 ± 

0.23 

Very Strongly 

Reinforcing 
+70.6 

The results demonstrate that most policy combinations 
exhibit positive synergy effects, with PSI values ranging 
from 1.17 to 1.71. The combination of renewable 
subsidies and innovation support shows particularly 

strong synergy (PSI = 1.42). The synergistic effects 
increase with the number of complementary policies 
implemented simultaneously. Figure 4 provides a 
network visualization of policy synergies. 

Figure 4: Network Visualization of Policy Synergy Relationships 

 

The figure presents a complex network diagram 
depicting policy synergy relationships. Policies are 
represented as nodes of varying sizes (proportional to 
their  

carbon reduction potential), while the connections 
between nodes represent synergistic interactions. The 
width and colour of these connections encode the 
strength and nature of the synergy (with blue for 
reinforcing, red for counteracting, and yellow for 
conditional synergies). 

The network visualization reveals that carbon pricing 
and renewable subsidies act as central nodes with 
numerous strong connections to other policies, 
indicating their potential role as foundational elements 
of effective policy portfolios. 

4.3. Policy Effectiveness Across Regional Variations 

The effectiveness of carbon neutrality policies exhibits 
substantial regional variations. Table 8 presents a 
comparative analysis across four representative regions. 

Table 8: Regional Variations in Policy Effectiveness 

Region 
Dominant Economic 

Sectors 
Energy Mix 

Policy Effectiveness 

Ranking 

PSI 

Range 

Region 

A 
Manufacturing, Services 

Coal (52%), Natural Gas (28%), 

Renewables (15%) 
1. Carbon Pricing 1.28-1.62 



 

Journal of Advanced Computing Systems (JACS)  ISSN: 3066-3962 

 

Vol. 4(10), pp. 38-54, October 2024  

[50] 

2. Efficiency Standards 

3. Regulatory Measures 

Region 

B 
Services, Agriculture 

Natural Gas (45%), Nuclear (30%), 

Renewables (22%) 

1. Renewable Subsidies 

2. Innovation Support 

3. Carbon Pricing 

1.15-1.53 

Region 

C 
Heavy Industry, Mining 

Coal (68%), Natural Gas (18%), 

Renewables (10%) 

1. Efficiency Standards 

2. Carbon Pricing 

3. Innovation Support 

1.05-1.44 

Region 

D 
Agriculture, Tourism 

Renewables (48%), Natural Gas (35%), 

Oil (15%) 

1. Regulatory Measures 

2. Renewable Subsidies 

3. Efficiency Standards 

1.12-1.39 

The regional analysis reveals that carbon pricing 
mechanisms are particularly effective in Region A, 
characterized by a developed manufacturing sector. This 
finding corresponds with the observations of Liu et al. 
(2023) regarding market equilibrium effects of carbon 
emission trading. In contrast, Region C, dominated by 
carbon-intensive heavy industries, shows the highest 
effectiveness for efficiency standards. 

4.4. Temporal Analysis of Policy Implementation 

The temporal analysis of policy implementation reveals 
important insights into the dynamic evolution of policy 
effectiveness and synergistic interactions over time. 
Figure 5 illustrates the temporal trajectories of carbon 
reduction achievements for different policy portfolios. 

Figure 5: Temporal Evolution of Carbon Reduction for Different Policy Portfolios 

 The figure presents a multi-line graph showing the 
temporal evolution of carbon reduction achievements 
for different policy portfolios over 15 years. The x-axis 
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represents time (2008-2023), while the y-axis shows 
cumulative carbon reduction in Mt CO₂-eq. Multiple 
coloured lines represent different policy portfolios, 
including individual policies and various combinations. 

The temporal analysis reveals that the effectiveness of 
most policies improves over time, with initial 
implementation challenges giving way to more 
substantial impacts as administrative processes are 
refined and stakeholders adapt. Synergistic effects 
typically manifest with a time lag of 2-3 years after 
policy implementation, consistent with the findings of 

Alabi et al. (2024) regarding adaptation periods in 
complex systems. 

4.5. Sensitivity Analysis and Model Robustness 

The sensitivity analysis assesses the robustness of 

model predictions and synergy assessments under 

different assumptions and parameter variations. Table 9 

presents the results of a comprehensive sensitivity 

analysis. 

Table 9: Sensitivity Analysis of Model Predictions and Synergy Assessments 

Parameter Variation Range Impact on Carbon Reduction Predictions Impact on PSI Values 

Discount Rate 2-7% High (±18.6%) Moderate (±9.3%) 

Technology Learning Rate ±50% Very High (±24.3%) High (±15.8%) 

Implementation Delay 0-3 years Moderate (±12.1%) Moderate (±8.5%) 

Policy Compliance Rate 70-100% High (±19.7%) Moderate (±10.4%) 

Energy Price Volatility ±30% High (±17.9%) High (±14.3%) 

The sensitivity analysis reveals that technology learning 
rate assumptions have the most significant impact on 
carbon reduction predictions (±24.3%), followed by 
policy compliance rate (±19.7%). These findings 
highlight the importance of accurate technology 

forecasting and policy compliance monitoring for 
reliable synergy assessments. Figure 6 presents a 
visualization of the model's robustness across different 
conditions. 

Figure 6: Model Robustness Analysis Under Various Scenarios 
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The figure presents a complex multi-panel visualization 
of model robustness. The central panel features a 
parallel coordinates plot where each vertical axis 
represents a different model parameter or assumption, 
and coloured lines represent different scenario 
combinations. Surrounding this are smaller panels 
showing the distribution of prediction errors under 
various conditions. 

The robustness analysis demonstrates that the model 
maintains reasonable prediction accuracy across a wide 
range of conditions, with prediction errors generally 
remaining below 15% for core synergy metrics. The 
model shows greater sensitivity to assumptions 
regarding technological change and policy 
implementation than to macroeconomic variables, 
consistent with the findings of Xu et al. (2023) regarding 
the importance of technological parameters in carbon 
neutrality modelling. 

5. Discussion and Conclusion 

5.1. Key Findings and Implications 

This research has quantified the synergistic effects of 
regional carbon neutrality policies using deep learning 
techniques, yielding several significant findings. The 
analysis demonstrates that policy combinations 
generally produce stronger carbon reduction effects than 
the sum of individual policies, with PSI values ranging 
from 1.17 to 1.71. Particularly strong synergies emerge 
between renewable subsidies and innovation support 
(PSI = 1.42), while comprehensive five-policy 
portfolios achieve the highest synergy values (PSI = 
1.71). These findings align with the observations of Xin 
et al. (2024), who identified that comprehensive 
measures integrating energy efficiency improvements, 
industrial technology upgrades, and energy source 
decarbonization effectively advance regional carbon 
neutrality goals. 

Regional analysis reveals substantial variations in 
policy effectiveness, with carbon pricing proving most 
effective in manufacturing-dominated economies, while 
regions with carbon-intensive industries show greater 
responsiveness to efficiency standards. These regional 
variations highlight the importance of tailored policy 
portfolios that account for local economic structures, 
energy systems, and institutional capacities. The 
temporal analysis indicates that policy effectiveness 
generally improves over time, with synergistic effects 
manifesting after a typical lag of 2-3 years, as 
administrative processes are refined and stakeholders 
adapt to policy signals. 

5.2. Policy Recommendations for Enhanced 

Synergies 

Based on the quantified synergy assessments, several 
policy recommendations emerge for enhancing 
collaborative effects. Policy portfolios should be 
designed with explicit consideration of potential 
synergistic interactions rather than treating each policy 
as an independent intervention. The strong 
complementarity between renewable subsidies and 
innovation support suggests that technological 
advancement policies should be closely coordinated 
with market-based incentives to maximize carbon 
reduction outcomes. This approach resonates with the 
findings of Liu et al. (2023), who demonstrated the 
importance of integrated policy design in electricity 
markets with carbon trading mechanisms. 

Implementation sequencing deserves careful attention, 
with foundational policies such as carbon pricing 
mechanisms established before complementary 
interventions to create favourable conditions for 
reinforcing effects. Regional policy portfolios should be 
tailored to local conditions, with manufacturing-
dominated regions emphasizing carbon pricing and 
efficiency standards, while regions with strong 
innovation ecosystems focus on renewable subsidies 
and innovation support. The identified time lags in 
synergy manifestation suggest the need for policy 
stability and patience during early implementation 
phases, as highlighted by Alabi et al. (2024) in their 
analysis of adaptation periods in complex energy 
systems. 

5.3. Limitations of the Current Study 

Despite its contributions, this research has several 
limitations that should be acknowledged. The deep 
learning approach relies on historical data patterns, 
potentially limiting its applicability in contexts 
experiencing unprecedented technological or 
socioeconomic transitions. The regional analysis covers 
a diverse but limited set of economic and energy system 
configurations, which may not fully represent the global 
diversity of carbon neutrality implementation contexts. 
These limitations echo the challenges identified by Xu 
et al. (2023) regarding the generalizability of 
computational models in carbon neutrality assessment. 

Methodological limitations include the simplified 
representation of certain policy mechanisms and 
implementation processes in the neural network 
architecture. While the model captures many complex 
interactions, some nuanced aspects of policy design and 
implementation may not be fully represented. The 
sensitivity analysis reveals particular vulnerability to 
assumptions regarding technology learning rates and 
policy compliance, suggesting areas where improved 
data collection and monitoring could enhance prediction 
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reliability. Future research should address these 
limitations through expanded regional coverage, 
enhanced representation of policy implementation 
processes, and integration of additional data sources to 
improve prediction robustness. 
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