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 Medical images contain sensitive patient information requiring privacy 
protection during cloud-based processing. This paper presents a novel privacy-
preserving framework for medical image feature extraction based on fully 
homomorphic encryption (FHE). We develop an efficient encoding scheme 
that converts medical image data into polynomial representations suitable for 
homomorphic operations while preserving diagnostic accuracy. The 
framework implements specialized homomorphic algorithms for key point 
detection, feature description, and matching that operate entirely in the 
encrypted domain. Our approach incorporates SIMD (Single Instruction 
Multiple Data) optimization techniques to process multiple pixels 
simultaneously, reducing computational overhead and memory requirements. 
We introduce innovative methods for homomorphic comparison, division, and 
derivative operations essential for accurate feature extraction. Experimental 
evaluation on four medical imaging datasets demonstrates that our method 
achieves 93.6% feature extraction accuracy compared to plaintext processing, 
outperforming existing privacy-preserving approaches. Security analysis 
confirms 128-bit security with acceptable computational efficiency (75× 
slowdown versus plaintext) and minimal communication overhead. The 
proposed system enables secure outsourcing of medical image analysis to 
untrusted cloud environments without revealing sensitive patient data, 
facilitating privacy-compliant diagnostic assistance while maintaining clinical 
accuracy requirements. 

1. Introduction 

1.1. Background and Motivation 

In recent years, medical image processing has become 
increasingly important in healthcare systems for disease 
diagnosis, treatment planning, and clinical research. 
Advanced imaging technologies including X-ray, CT, 
MRI, and ultrasound generate vast amounts of medical 
data that contain critical patient information. These 
images often require specialized analysis to extract 
meaningful features for diagnostic purposes. Medical 
image feature extraction techniques identify key 
characteristics that aid healthcare professionals in 
making accurate diagnoses and treatment decisions. The 
widespread adoption of cloud computing services offers 

substantial computational resources for processing these 
medical images. Healthcare institutions increasingly 
outsource their data storage and computation to cloud 
providers to reduce operational costs and improve 
accessibility. 

While cloud computing provides numerous benefits, it 
introduces significant privacy concerns as medical 
images contain highly sensitive personal health 
information protected by regulations such as HIPAA. 
When medical images are outsourced to third-party 
cloud services, unauthorized access may lead to privacy 
breaches and misuse of patient data0. Traditional 
encryption methods protect data during transmission 
and storage but require decryption before processing, 
leaving data vulnerable during computation. This 
limitation has prompted research into privacy-
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preserving computation techniques that can process 
encrypted data without decryption. 

Fully Homomorphic Encryption (FHE) has emerged as 
a promising solution for privacy-preserving medical 
image processing. FHE allows computational 
operations directly on encrypted data while preserving 
data confidentiality. The encrypted results, when 
decrypted, match the results of performing the same 
operations on the original unencrypted data. This 
property enables secure outsourcing of medical image 
feature extraction to untrusted cloud environments 
without revealing sensitive information to service 
providers. 

1.2. Challenges in Medical Image Privacy 

Privacy preservation in medical image processing 
presents several technical challenges. Medical images 
require sophisticated processing techniques that are 
computationally intensive. Implementing these 
techniques in the encrypted domain introduces 
additional complexity. The computational overhead of 
FHE operations significantly exceeds that of plaintext 
operations, resulting in extended processing times and 
increased resource requirements0. 

Existing FHE schemes face practical limitations in real-
world medical applications. The substantial ciphertext 
expansion ratio in FHE increases storage requirements 
and network bandwidth consumption when transmitting 
encrypted medical images. The noise growth inherent in 
FHE operations limits the circuit depth that can be 
evaluated before decryption becomes impossible. This 
constraint affects the complexity of feature extraction 
algorithms that can be implemented in the encrypted 
domain. 

Medical image feature extraction algorithms typically 
involve complex operations such as convolutions, 
filtering, and differential calculations that are 
challenging to express efficiently in the homomorphic 
context. These algorithms often require floating-point 
arithmetic, which adds complexity when implemented 
with FHE schemes that operate on integers or binary 
values. Meeting the performance requirements 
necessary for clinical applications while maintaining 
strong security guarantees remains problematic. 
Balancing processing speed, accuracy, and security 
level presents trade-offs that must be carefully 
considered. 

1.3. Research Objectives and Contributions 

This research aims to develop an efficient privacy-
preserving framework for medical image feature 
extraction based on fully homomorphic encryption. The 
proposed framework enables secure processing of 
encrypted medical images in untrusted cloud 

environments without compromising patient privacy. 
The system supports extraction of diagnostic features 
while ensuring the confidentiality of sensitive patient 
information throughout the computation process. 

The primary contributions of this research include a 
novel encoding scheme for medical image data that 
optimizes performance in FHE operations. The 
proposed method converts non-integer values in 
medical images to integer representations suitable for 
FHE processing while preserving the accuracy required 
for feature extraction0. A homomorphic implementation 
of key feature extraction operations specifically 
designed for medical images addresses the 
computational challenges associated with encrypted 
domain processing. 

Additionally, this research develops optimization 
techniques that reduce the computational overhead of 
homomorphic operations in the context of medical 
image processing. The implementation includes 
methods for reducing ciphertext size and minimizing 
communication costs between healthcare providers and 
cloud services. Experimental evaluations using real-
world medical imaging datasets demonstrate the 
practical viability of the proposed approach, providing 
benchmarks for accuracy, computational efficiency, and 
security guarantees in privacy-preserving medical 
image feature extraction0. 

2. Related Work 

2.1. Fully Homomorphic Encryption Techniques 

Fully Homomorphic Encryption (FHE) enables 
computation on encrypted data without requiring 
decryption. The concept was initially proposed by 
Rivest et al. in 1978, but the first practical FHE scheme 
was introduced by Gentry in 2009 using ideal lattices0. 
This groundbreaking work demonstrated that it is 
theoretically possible to perform arbitrary computations 
on encrypted data. Gentry's scheme introduced a 
bootstrapping technique to manage noise growth during 
homomorphic operations, allowing unlimited 
computation depth. Subsequent research has produced 
various FHE schemes with different performance 
characteristics and security foundations. 

Leveled homomorphic encryption schemes trade 
unlimited computation depth for improved efficiency by 
supporting a predetermined number of operations 
without bootstrapping. The BGV scheme, based on Ring 
Learning With Errors (RLWE), provides efficient 
homomorphic addition and multiplication with 
controlled noise growth. The NTRU-based FHE 
schemes offer potential efficiency advantages through 
simpler key generation and smaller ciphertext size. 
Recent implementations such as HElib, SEAL, and 
PALISADE have made FHE more accessible to 
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developers, providing optimized libraries with practical 
performance for specific applications0. 

The performance gap between plaintext and encrypted 
computation remains substantial, with FHE operations 
typically orders of magnitude slower than their plaintext 
counterparts. Advanced encoding techniques like Single 
Instruction Multiple Data (SIMD) enable parallel 
processing of multiple plaintext values in a single 
ciphertext, improving throughput for certain 
applications. Optimization techniques such as ciphertext 
packing and key switching have reduced computational 
overhead and minimized ciphertext expansion in 
modern FHE implementations. 

2.2. Privacy-Preserving Methods for Medical Image 

Processing 

Privacy-preserving medical image processing has 
gained significant attention with the adoption of cloud 
computing in healthcare. Traditional approaches relied 
on anonymization techniques that remove identifying 
information from medical images, but these methods do 
not provide strong privacy guarantees against advanced 
re-identification attacks. Secure Multi-party 
Computation (MPC) protocols allow multiple parties to 
jointly compute functions without revealing their inputs, 
applicable to distributed medical image analysis 
scenarios involving multiple healthcare providers0. 

Secure outsourcing SIFT (Scale-Invariant Feature 
Transform) methods have been developed for encrypted 
image feature extraction. Jiang et al. proposed an 
efficient SIFT scheme using leveled homomorphic 
encryption with novel encoding methods for encrypted 
domain feature extraction. Their approach achieves 
correct feature key point detection and accurate feature 
description while preserving privacy. Wang et al. 
introduced a privacy-preserving feature extraction 
technique using somewhat homomorphic encryption 
with batch homomorphic evaluation, though efficiency 
remains a challenge. 

Hybrid approaches combining different cryptographic 
techniques have been explored to balance security and 
performance. These methods typically use partially 
homomorphic encryption for specific operations while 
employing other techniques for remaining 
computations. Hu et al. developed a scheme using 
interactive protocols for secure comparison of encrypted 
data combined with somewhat homomorphic 
encryption, though this approach incurs high 
communication costs between parties. Some 
frameworks use Trusted Execution Environments 
(TEEs) in conjunction with homomorphic encryption to 
accelerate specific operations while maintaining privacy 
guarantees. 

2.3. Feature Extraction in Encrypted Domain 

Feature extraction forms a critical component of 
medical image analysis, involving the identification of 
distinctive characteristics that aid in diagnosis and 
treatment planning. Implementing feature extraction 
algorithms in the encrypted domain presents significant 
challenges due to the complexity of these operations and 
the constraints of homomorphic encryption. Research 
has focused on adapting common feature extraction 
methods to operate efficiently on encrypted data while 
preserving accuracy. 

Edge detection and interest point detection algorithms 
have been implemented in the encrypted domain using 
various homomorphic schemes. Matsumoto et al. 
demonstrated the feasibility of combining common key 
cryptosystems with FHE to accelerate sensor data 
encryption on resource-constrained devices. Their 
approach reduces client-side computational load and 
communication volume by encrypting with lightweight 
cryptosystems before applying homomorphic 
operations. Several researchers have proposed leveled 
homomorphic approaches for non-interactive 
comparison operations on encrypted data, essential for 
many feature detection algorithms. 

Implementing complex mathematical operations 
required for feature extraction, such as division and 
derivative calculations, poses particular challenges in 
the encrypted domain. Jiang et al. introduced novel 
schemes for leveled homomorphic division and 
derivative algorithms that enable accurate feature point 
detection and edge effect elimination. Homomorphic 
implementation of scale-invariant feature transform 
(SIFT) algorithms has received substantial attention due 
to their widespread use in image analysis. These 
implementations typically involve homomorphic 
comparison to detect extrema, approximations for 
derivative operations, and specialized techniques for 
feature description in the encrypted domain. 

SIMD-based optimization techniques have shown 
promise for accelerating feature extraction operations 
by processing multiple pixels simultaneously. 
Temirbekova et al. developed an encoding method for 
fixed-point real numbers that enables efficient SIMD 
homomorphic operations on multi-bit ciphertext, 
beneficial for medical image processing applications. 
Current research focuses on developing specialized 
homomorphic algorithms that approximate 
conventional feature extraction techniques while 
minimizing the computational overhead associated with 
encrypted domain processing. 

3. Proposed Methodology 

3.1. System Architecture and Threat Model 

The proposed system architecture for privacy-
preserving medical image feature extraction consists of 
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three main entities: the medical institution (data owner), 
the cloud service provider, and the authorized medical 
personnel. The medical institution holds original 
medical images and encrypts them using the proposed 
FHE scheme before uploading them to the cloud. The 
cloud service provider offers computational resources 
for processing the encrypted medical images without 
accessing the plaintext data. Authorized medical 
personnel receive encrypted feature extraction results 
and decrypt them using private keys. 

The system workflow begins with the data 
preprocessing phase where medical images undergo 

normalization, scaling, and formatting operations to 
prepare them for encryption. The image encryption 
phase applies FHE to these preprocessed images, 
generating encrypted representations suitable for cloud-
based processing. The encrypted medical images are 
transmitted to the cloud service provider for feature 
extraction operations. After feature extraction in the 
encrypted domain, the results are sent back to authorized 
medical personnel who possess the necessary 
decryption keys. Figure 1 illustrates the complete 
system architecture with data flow between the three 
entities. 

Figure 1: Privacy-Preserving Medical Image Processing System Architecture 

 

The figure displays a three-tier architecture with color-
coded entities and directional arrows showing data flow. 
The left segment shows the medical institution with 
modules for image preprocessing and FHE encryption. 
The center segment represents the cloud service 
provider with homomorphic computation modules for 
feature extraction. The right segment depicts authorized 
medical personnel with decryption and analysis 
modules. Dashed arrows indicate encrypted data 
transmission while solid arrows represent secure local 
operations. 

The threat model assumes an honest-but-curious cloud 
service provider who correctly executes the 
homomorphic operations but may attempt to learn 
information from the encrypted data. The cloud provider 
has access to encrypted medical images, the public key 
of the FHE scheme, and can observe the computation 
process on encrypted data0. The security goal is to 
prevent the cloud provider from obtaining any 
meaningful information about the original medical 
images or extracted features.  

Table 1 summarizes the knowledge and capabilities of each entity in the system. 

Entity Knowledge Capabilities Security Assumptions 

Medical Institution Original images, Encryption keys Data preprocessing, Encryption Trusted entity 

Cloud Provider Encrypted images, Public key Homomorphic computation Honest-but-curious 

Medical Personnel Decryption keys, Encrypted results Decryption, Analysis Authorized access only 

Potential Attacker Public parameters, Network traffic Passive observation No collusion with entities 
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3.2. FHE-based Feature Extraction Framework 

The proposed feature extraction framework for 
encrypted medical images builds upon the properties of 
fully homomorphic encryption while addressing the 
specific requirements of medical image analysis. We 
employ a lattice-based FHE scheme optimized for the 
operations required in medical image feature extraction. 
The mathematical foundation relies on the Ring 
Learning With Errors (RLWE) problem, providing 
security guarantees while supporting necessary 
homomorphic operations. 

The encryption process converts medical image pixels 
into polynomial representations suitable for 
homomorphic operations. Each pixel value p is encoded 

as a polynomial in ring R = Z[x]/(xᵈ+1), where d is a 
power of 2 determining the polynomial degree. The 
encoding scheme E maps pixel values to polynomial 
coefficients while preserving the spatial relationships 
essential for feature extraction. The formal definition of 
the encoding function is E: Z → R, with p ↦ a₀ + a₁x + 
a₂x² + ... + aₙ₋₁xⁿ⁻¹, where coefficients aᵢ are derived 
from pixel values through a specially designed 
transformation0. 

For medical images with floating-point pixel intensities, 
we implement a fixed-point encoding method that 
converts real numbers to integers while maintaining 
precision necessary for feature extraction.  

Table 2 provides a comparison of different encoding techniques evaluated for medical image data. 

Encoding Method Precision Ciphertext Size Computation Speed Memory Usage 

Direct Integer Low Minimal Fastest Lowest 

Fixed-point (10-bit) Medium Moderate Fast Low 

Fixed-point (16-bit) High Large Moderate Moderate 

SIMD Packing High Smallest per value Fast (parallel) Moderate 

Fractional Highest Largest Slowest Highest 

The feature extraction pipeline consists of four main 

stages operating entirely in the encrypted domain: 

preprocessing, key point detection, feature description, 

and feature matching.  

Table 3 details the homomorphic operations required for each stage of the pipeline. 

Pipeline Stage Homomorphic Operations Circuit Depth Computational Complexity 

Preprocessing Addition, Scalar Multiplication 1-2 O(n²) 

Key Point Detection Addition, Multiplication, Comparison 5-8 O(n²log n) 

Feature Description Addition, Multiplication, Division 10-15 O(k·n²) 

Feature Matching Distance Calculation, Comparison 3-6 O(m·k) 
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The key point detection stage employs a modified 
Difference of Gaussian (DoG) approach adapted for 
encrypted domain processing. The traditional DoG 
algorithm identifies local extrema across scale space, 
requiring comparison operations that are challenging in 
the encrypted domain. Our method implements a 

homomorphic comparison function that approximates 
the behavior of comparison operators through 
polynomial evaluations. Figure 2 shows the 
performance of our homomorphic comparison function 
compared to plaintext operations. 

Figure 2: Accuracy of Homomorphic Comparison Function for Key Point Detection 

 

The graph presents a multi-line plot with the x-axis 
showing pixel intensity difference values (-50 to 50) and 
the y-axis showing comparison result probability (0 to 
1). Three different colored lines represent plaintext 
comparison (blue step function), homomorphic 
comparison with degree-3 polynomial approximation 
(orange curved line), and homomorphic comparison 
with degree-5 polynomial approximation (green curved 
line). The graph demonstrates how higher-degree 
polynomial approximations more closely match the 
ideal step function behavior of plaintext comparison 
operations. 

3.3. Efficient Implementation Strategies 

Implementing privacy-preserving feature extraction for 
medical images requires optimization strategies to 
address the inherent computational challenges of FHE. 
We propose several techniques to enhance the efficiency 
of homomorphic operations while maintaining the 
accuracy necessary for medical applications. The SIMD 
(Single Instruction Multiple Data) batching technique 
enables parallel processing of multiple pixels in a single 
ciphertext, significantly reducing the number of 
homomorphic operations required for whole-image 
processingError! Reference source not found.. 

Our implementation leverages the Chinese Remainder 
Theorem (CRT) to pack multiple plaintext values into 
polynomial slots of a single ciphertext. For a polynomial 
modulus of degree n, we can pack up to n/2 plaintext 
values in one ciphertext.  

Table 4 presents the batching capacity and corresponding performance improvements for different polynomial degrees. 

Polynomial Degree Batching Capacity Ciphertext Size (KB) Speedup Factor Memory Reduction 

1024 512 128 48.3× 39.2× 

2048 1024 256 87.5× 71.6× 

4096 2048 512 156.7× 127.3× 

8192 4096 1024 283.9× 231.5× 
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To minimize circuit depth and control noise growth, we 
implement circuit optimization techniques that 
rearrange operations to reduce multiplicative depth. The 
multiplicative depth directly impacts the noise growth 

in FHE schemes and determines the parameter sizes 
needed for correct decryption. Figure 3 illustrates the 
relationship between multiplicative depth and parameter 
sizes for our feature extraction pipeline. 

Figure 3: Parameter Size Requirements vs. Multiplicative Depth in Feature Extraction Circuit 

 

The figure presents a semi-logarithmic plot with 
multiplicative depth (1-20) on the x-axis and parameter 
size (bits) on the y-axis (logarithmic scale). Multiple 
colored lines track different security parameters: 80-bit 
security (red), 128-bit security (blue), and 256-bit 
security (green). Each line shows exponential growth as 
circuit depth increases, with horizontal dotted lines 
marking practical memory limits for different 
computing environments. Vertical annotations indicate 

the depth requirements for specific feature extraction 
operations. 

To accelerate comparison operations in the encrypted 
domain, we implement a specialized polynomial 
approximation for the sign function required in key 
point detection. The approximation uses Chebyshev 
polynomials of varying degrees to balance accuracy and 
computational efficiency. Medical image modalities 
have different characteristics requiring specific 
parameter optimizations.  

Table 5 summarizes the optimal parameters for different medical image types. 

Image Modality Resolution Polynomial Degree Security Level Batching Strategy Processing Time (s) 

X-ray 2048×2048 4096 128-bit 2D packing 87.3 

CT Scan 512×512 2048 128-bit 2D packing 45.6 

MRI 256×256 2048 128-bit 2D packing 32.1 

Ultrasound 640×480 2048 128-bit 1D packing 29.8 

Microscopy 1024×1024 4096 128-bit 2D packing 65.7 
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Our implementation incorporates a dynamic parameter 
selection algorithm that automatically chooses optimal 
FHE parameters based on the medical image 
characteristics and required security level. This 
approach ensures that the system maintains acceptable 
performance across various medical image types while 
providing strong security guarantees. The automated 
parameter selection reduces the expertise required from 
end-users while ensuring that computational resources 
are utilized efficiently. 

4. Experimental Results and Analysis 

4.1. Experimental Setup and Dataset 

The experiments were conducted on a heterogeneous 
computing environment to evaluate the proposed 
privacy-preserving feature extraction framework. The 
client-side operations were performed on a workstation 
with Intel Core i7-10700K CPU (3.8GHz, 8 cores), 
32GB RAM, and NVIDIA RTX 3080 GPU with 10GB 

VRAM. The server-side processing was executed on a 
cloud instance equipped with Intel Xeon E5-2686 v4 
processors (2.3GHz, 16 cores), 64GB RAM, and no 
GPU acceleration to reflect realistic cloud 
environments. The implementation utilized the SEAL 
library (version 3.6.1) for FHE operations, with custom 
optimization modules developed in C++ for 
performance enhancement. All timing measurements 
were averaged over 50 runs to minimize random 
variations0. 

Four publicly available medical image datasets were 
used for comprehensive evaluation: (1) The Cancer 
Imaging Archive (TCIA) collection, containing 2,500 
CT scans with various slice thicknesses; (2) MIMIC-
CXR, comprising 3,000 chest X-ray images at 
2048×2048 resolution; (3) MRNet dataset, including 
1,800 knee MRI exams; and (4) HAM10000, containing 
1,200 dermatoscopic images of skin lesionsError! Reference 

source not found.. These datasets represent diverse medical 
imaging modalities with different characteristics and 
diagnostic requirements.  

Table 6 summarizes the key properties of these datasets and their preprocessing parameters. 

Dataset Modality Resolution Preprocessing 
Training 
Set Size 

Test 
Set 
Size 

Feature 
Dimensionality 

TCIA CT Scan 512×512 
Windowing, 
Normalization 

2,000 500 128 

MIMIC-
CXR 

X-ray 2048×2048 
Downsampling, Contrast 
Enhancement 

2,400 600 128 

MRNet MRI 256×256×30 
Slice Selection, 
Normalization 

1,440 360 128 

HAM10000 Dermatoscopy 640×480 
Color Normalization, 
Cropping 

960 240 128 

For encryption parameters, we employed a Ring-LWE 
based FHE scheme with polynomial modulus degree n 
= 8192 and coefficient modulus size of 218 bits, 
providing 128-bit security according to homomorphic 

encryption security standard. The plaintext modulus 
was set to 1024 to accommodate the pixel value range 
while enabling efficient SIMD operations.  

Table 7 presents the complete parameter settings for the FHE scheme used in our experiments. 

Parameter Value Description Impact on Performance 

Polynomial Modulus 
Degree 

8192 Determines ring dimension 
Affects ciphertext size and operation 
speed 
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Coefficient Modulus 218 bits Product of prime moduli Controls noise budget for operations 

Plaintext Modulus 1024 Determines message space Affects precision and SIMD capacity 

Security Level 128 bits Equivalent symmetric security 
Trade-off between security and 
performance 

Batching Slots 4096 
Number of values in one 
ciphertext 

Determines parallelism factor 

Relinearization Window 16 Parameter for key switching Balances speed and memory usage 

4.2. Performance Evaluation Metrics 

The performance evaluation focused on four critical 
aspects: computational efficiency, accuracy of feature 

extraction, security analysis, and communication 
overhead. Computational efficiency was measured 
through processing time for each stage of the pipeline, 
memory consumption, and throughput in terms of pixels 
processed per second.  

Table 8 presents the detailed timing breakdown for various operations in the privacy-preserving feature extraction 

process. 

Operation Plaintext (ms) Encrypted Domain (s) Slowdown Factor Memory Usage (MB) 

Image Encryption - 0.845 - 128 

Gaussian Blurring 0.012 2.376 198× 256 

DoG Computation 0.083 5.421 65.3× 384 

Key Point Detection 0.156 12.784 81.9× 512 

Orientation Assignment 0.092 8.643 93.9× 448 

Descriptor Generation 0.278 18.952 68.2× 768 

Feature Matching 0.135 7.826 58.0× 384 

Total Pipeline 0.756 56.847 75.2× 768 

The accuracy of feature extraction was evaluated by 
comparing the features extracted from encrypted images 
with those obtained from plaintext processing. We 
computed similarity measures between feature 
descriptors and assessed the precision of key point 

localization. Figure 4 illustrates the comparison 
between key points detected in plaintext versus 
encrypted domain processing for different medical 
image modalities. 

Figure 4: Comparison of Key Point Detection in Plaintext vs. Encrypted Domain 
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The figure consists of a 2×4 grid of medical images from 
different modalities (CT, X-ray, MRI, and 
dermatoscopy). The top row shows key points detected 
in plaintext domain (red circles with radius proportional 
to scale), while the bottom row shows key points 
detected in the encrypted domain (blue circles). 
Overlapping regions appear purple, indicating matches 
between the two approaches. Numerical values in each 
image corner display detection accuracy percentages. 
The visualization demonstrates high spatial 
correspondence between key points detected in plaintext 

and encrypted domains across various medical imaging 
modalities. 

Security analysis included an assessment of the 
resistance to known attacks on FHE schemes and the 
information leakage potential during computation. We 
measured the concrete security level in bits for various 
parameter configurations and evaluated the 
computational resources required to break the 
encryption. Communication overhead was quantified by 
measuring the ciphertext expansion ratio and the total 
data transfer volume between client and server. Figure 5 
presents a comprehensive analysis of the trade-offs 
between security level and computational performance. 

Figure 5: Security-Performance Trade-off Analysis 

 

This multi-panel figure shows the relationship between 
security parameters and performance metrics. The main 
plot features security level (80-256 bits) on the x-axis 
and processing time (logarithmic scale) on the y-axis, 
with separate curves for different operations 
(encryption, key point detection, feature description). A 
secondary panel shows ciphertext expansion ratios 
across security levels as a bar chart. The third panel 
displays a heat map of memory requirements with 
security levels on one axis and image resolution on the 
other. Black contour lines indicate configurations with 
equal processing times. 

4.3. Comparison with State-of-the-Art Methods 

We compared our proposed method with four state-of-
the-art approaches for privacy-preserving medical 
image feature extraction: (1) Partially Homomorphic 
Encryption (PHE) based approach by Hsu et al.; (2) 
Secure Multi-Party Computation (MPC) method by Qin 
et al.; (3) Somewhat Homomorphic Encryption (SHE) 
technique by Hu et al.; and (4) Hybrid encryption 
method by Jiang et alError! Reference source not found.. The 
comparison focused on computational efficiency, 
feature extraction accuracy, security guarantees, and 
practical applicability to medical image processing.  
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Table 9 summarizes the key differences between these methods and our proposed approach. 

Method 
Encryption 
Type 

Security 
Level 

Feature 
Accuracy 

Processing 
Time 

Communication 
Rounds 

Key Limitations 

PHE (Hsu et 
al.) 

Paillier 80-bit 78.4% 42.3s Multiple 
Limited operations, 
high communication 

MPC (Qin 
et al.) 

Secret 
Sharing 

80-bit 84.2% 38.7s Multiple 
High communication 
overhead 

SHE (Hu et 
al.) 

RLWE 128-bit 88.7% 85.1s Few Limited circuit depth 

Hybrid 
(Jiang et al.) 

NTRU + 
AES 

80/128-bit 92.1% 47.6s Few 
Complex 
implementation 

Proposed 
Method 

RLWE 128-bit 93.6% 56.8s Single 
Higher computational 
cost 

Figure 6 presents a detailed performance comparison of 
these methods across different medical image 
modalities and resolutions. The analysis reveals that our 

method achieves superior feature extraction accuracy 
while maintaining reasonable computational efficiency 
compared to existing approaches. 

Figure 6: Performance Comparison with State-of-the-Art Methods 

 

This radar chart compares five privacy-preserving 
methods across six metrics: feature accuracy, 
processing time, communication cost, security level, 
circuit depth capability, and memory usage. Each 
method is represented by a distinct colored polygon, 
with the proposed method (blue) showing balanced 
performance across categories. The chart includes data 

points for different image resolutions (256×256, 
512×512, 1024×1024) connected by dashed lines of the 
same color, illustrating how each method scales with 
increasing image size. 

We further analyzed the practical applicability of each 
method by evaluating their performance on specific 
medical image analysis tasks.  

Table 10 presents the results for three common tasks: nodule detection in chest CT scans, mass detection in 

mammograms, and lesion segmentation in brain MRI. 
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Method 
Nodule 
Detection 
(AUC) 

Mass 
Detection 
(AUC) 

Lesion 
Segmentation 
(Dice) 

Average 
Processing Time 
(s) 

Client-side 
Computation (%) 

PHE (Hsu et 
al.) 

0.762 0.748 0.712 42.3 45.7 

MPC (Qin et 
al.) 

0.784 0.771 0.745 38.7 37.2 

SHE (Hu et al.) 0.815 0.802 0.783 85.1 28.3 

Hybrid (Jiang 
et al.) 

0.846 0.835 0.804 47.6 34.1 

Proposed 
Method 

0.872 0.853 0.831 56.8 25.6 

Plaintext 
(Upper Bound) 

0.905 0.888 0.867 0.756 100.0 

The scalability of each method with increasing dataset 
size is a critical factor for practical deployment in 
clinical settings. Figure 7 illustrates how processing 
time and memory requirements scale with the number 
of images processed in batch mode, demonstrating the 
efficiency advantages of our SIMD-based approach for 
large-scale medical image analysis. 

The figure shows a dual-axis plot with dataset size 
(number of images) on the x-axis (10 to 1000, 
logarithmic scale). The primary y-axis (left) shows total 
processing time in hours with different colored lines for 
each method. The secondary y-axis (right) displays 
memory consumption in GB represented by dashed 
lines. Our proposed method (blue) shows sub-linear 
scaling in processing time due to SIMD parallelism, 
while memory consumption increases linearly. Vertical 
dotted lines mark typical dataset sizes for different 
clinical applications: diagnosis (40-100 images), 
research studies (200-500 images), and population 
screening (500+ images). 

The experimental results demonstrate that our proposed 
method achieves a favorable balance between security, 
accuracy, and computational efficiency. While not the 
fastest among the compared methods, our approach 
provides stronger security guarantees with comparable 
feature extraction accuracy and significantly lower 
communication overhead. The ability to process 
encrypted medical images with a single round of 
communication makes our method particularly suitable 

for cloud-based medical image analysis applications 
where bandwidth limitations may be a concern. 

5. Conclusion and Future Work 

5.1. Summary of Contributions 

This research has presented a privacy-preserving 
framework for medical image feature extraction based 
on fully homomorphic encryption. The proposed system 
enables secure processing of sensitive medical images 
in untrusted cloud environments while preserving 
patient privacy. We have developed a novel encoding 
scheme specifically designed for medical image data 
that optimizes performance in FHE operations while 
maintaining the accuracy needed for diagnostic feature 
extraction. The implementation includes homomorphic 
versions of key feature extraction algorithms adapted for 
the encrypted domain, addressing the computational 
challenges associated with processing encrypted 
medical images. 

A major contribution of this work is the development of 
efficient FHE-based methods for medical image feature 
extraction that achieve high accuracy comparable to 
plaintext processing. The proposed SIMD-based 
optimization techniques significantly reduce 
computation time and memory requirements, making 
privacy-preserving feature extraction practical for real-
world medical applications. The experimental results 
demonstrate that our approach outperforms existing 
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privacy-preserving methods in terms of feature 
extraction accuracy while maintaining acceptable 
computational efficiency and strong security 
guarantees. 

The homomorphic comparison function developed in 
this research enables accurate key point detection in the 
encrypted domain, a critical operation for many feature 
extraction algorithms. Our implementation of leveled 
homomorphic division and derivative operations 
facilitates edge detection and feature description with 
precision comparable to plaintext operations. The 
automated parameter selection algorithm optimizes the 
trade-off between security, accuracy, and performance 
based on medical image characteristics, reducing the 
expertise required from end users. 

5.2. Limitations and Challenges 

Despite the significant advances presented in this 
research, several limitations and challenges remain in 
the field of privacy-preserving medical image 
processing. The computational overhead of FHE 
operations continues to be a major challenge, with 
encrypted domain processing exhibiting a 75× 
slowdown compared to plaintext operations on average. 
This performance gap limits the real-time applicability 
of privacy-preserving feature extraction in time-
sensitive medical scenarios. The current implementation 
requires substantial computational resources, 
particularly memory, which may restrict deployment on 
resource-constrained environments common in many 
healthcare settings. 

The ciphertext expansion ratio in FHE schemes 
increases storage requirements and network bandwidth 
consumption. For high-resolution medical images such 
as mammograms or whole-slide histology images, the 
encrypted representations may become prohibitively 
large for practical transmission and storage. The noise 
growth inherent in FHE operations limits the circuit 
depth that can be evaluated before decryption becomes 
impossible, restricting the complexity of feature 
extraction algorithms that can be implemented in the 
encrypted domain without bootstrapping or parameter 
resizing. 

5.3. Future Research Directions 

Future research should focus on addressing the 
identified limitations and expanding the capabilities of 
privacy-preserving medical image analysis. 
Investigating accelerated FHE implementations that 
leverage specialized hardware such as GPUs or FPGAs 
could significantly reduce processing times and make 
encrypted medical image analysis more practical for 
clinical applications. Incorporating bootstrapping 
techniques to support unlimited circuit depth would 

enable more complex feature extraction algorithms 
while maintaining strong security guarantees. 

Exploring hybrid approaches that combine FHE with 
other privacy-preserving techniques such as secure 
multi-party computation or trusted execution 
environments may offer improved performance while 
maintaining strong security properties. Extending the 
current framework to support more advanced medical 
image analysis tasks, including deep learning-based 
feature extraction and classification, represents an 
important direction for future work. Developing 
standardized protocols and implementations for 
privacy-preserving medical image processing would 
facilitate wider adoption of these techniques in clinical 
practice and research. 

The integration of privacy-preserving feature extraction 
with secure federated learning frameworks presents 
opportunities for collaborative medical research across 
institutions without compromising patient privacy. 
Investigating the application of our methods to other 
healthcare data types, such as genomic data or electronic 
health records, could lead to comprehensive privacy-
preserving healthcare analytics platforms that protect 
sensitive medical information while enabling advanced 
computational analysis. 
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