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 This paper introduces FedRisk, a novel federated learning framework designed 
for multi-institutional financial risk assessment on cloud platforms. Traditional 
financial risk management systems face significant challenges in cross-
institutional contexts, including data silos, privacy concerns, and 
computational inefficiencies. FedRisk addresses these challenges by enabling 
collaborative model building while preserving data privacy and security. The 
framework implements a distributed approach where institutions train models 
locally using proprietary data, sharing only model parameters rather than raw 
data. We integrate knowledge graph technology with a specialized parameter 
aggregation strategy that accounts for data heterogeneity across participating 
institutions. Experimental results using financial data from 70 companies 
demonstrate that FedRisk significantly outperforms both centralized 
approaches and existing federated learning solutions, achieving 93.7% 
accuracy and 88.3% recall in financial crisis prediction. Under severe data 
heterogeneity conditions, FedRisk exhibits minimal performance degradation 
(12.3%) compared to traditional federated averaging (26.8%). Additionally, the 
framework demonstrates superior communication efficiency, requiring only 
0.16-0.18 GB of total data transfer, a 6-7× improvement over baseline methods. 
FedRisk provides a comprehensive solution for privacy-preserving, efficient, 
and accurate financial risk assessment across institutional boundaries. 

1. Introduction

Background and Motivation 

Financial risk management has emerged as a critical 
component in modern financial ecosystems, particularly 
with the advancement of information technology and the 
rise of cloud computing. The design of financial risk 
management systems has consistently attracted research 
attention as financial institutions operate in increasingly 
complex and interconnected environments. Cloud 
computing, characterized by its powerful data 
processing capabilities and flexible resource allocation, 
has transformed traditional financial risk management 
paradigms by enabling new solutions for data-driven 
risk prediction[1]. The integration of cloud platforms into 
financial services has facilitated centralized 
management and efficient processing of data, 
addressing issues of data dispersion and low processing 

efficiency that plagued traditional systems. Traditional 
financial risk management models often lack 
adaptability in complex and dynamic financial markets, 
necessitating innovative approaches that can better 
withstand market volatilities and provide more reliable 
risk assessments[2]. 

The development of data-driven financial risk 
prediction models based on cloud computing offers 
significant advantages in terms of scalability, 
computational efficiency, and resource optimization. 
These models leverage advanced algorithms and 
knowledge graph technology to achieve accurate 
identification and prediction of financial risks[3]. By 
combining multiple methods such as machine learning, 
deep learning, and statistical analysis, these models can 
learn patterns from historical data and predict future 
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financial risks with enhanced precision, thereby 
providing powerful decision support for financial 
institutions. The application of knowledge graphs 
enables better understanding of the internal connections 
within financial data, further improving the accuracy of 
predictions. 

Challenges in Financial Risk Assessment Across Multiple 

Institutions 

Despite advancements in financial risk management 
systems, significant challenges persist in multi-
institutional contexts. Data silos represent a primary 
challenge, with valuable financial data distributed 
across various institutions without effective 
mechanisms for collaboration. This fragmentation 
inhibits comprehensive risk assessment that could 
benefit from cross-institutional insights. Privacy 
concerns and regulatory compliance requirements 
further complicate data sharing among financial entities. 
Institutions must adhere to stringent regulations 
regarding customer data protection, limiting traditional 
centralized approaches to risk modeling[4]. 

Data heterogeneity presents additional obstacles, as 
different institutions employ diverse data formats, 
collection methodologies, and quality standards. This 
heterogeneity complicates the integration and 
normalization processes necessary for effective risk 
assessment. Communication overhead and 
computational burdens increase when attempting to 
process large volumes of financial data across 
institutional boundaries[5]. The construction and 
maintenance of knowledge graphs, while beneficial for 
deep relationship mining in financial data, incur high 
costs that must be optimized while ensuring 
effectiveness. Simulation testing of risk prediction 
models faces limitations due to realistic constraints in 
constructing virtual financial market environments that 
accurately reflect actual market conditions. 

Contributions of This Work 

This paper introduces FedRisk, a federated learning 
framework designed to address the challenges of multi-
institutional financial risk assessment on cloud 
platforms. The framework enables financial institutions 
to collaboratively build a comprehensive risk 
assessment model while maintaining data privacy and 
security. FedRisk incorporates a distributed model 
training approach where each institution trains models 
locally using proprietary data, sharing only model 
parameters rather than raw data, preserving privacy 
while leveraging collective insights. 

FedRisk integrates advanced risk prediction algorithms, 
fully utilizing knowledge graphs to understand complex 
financial relationships across institutions. The 

framework employs a novel parameter aggregation 
strategy that accounts for data heterogeneity across 
participating institutions, ensuring fair contribution 
from all participants regardless of data volume or 
quality variations. The system architecture is designed 
to operate efficiently within cloud environments, 
optimizing computational resource allocation and 
minimizing communication overhead during the 
federated learning process. 

Through extensive system simulation experiments, we 
verify the effectiveness and stability of the proposed 
framework in practical applications. Experimental 
results demonstrate that FedRisk significantly improves 
the accuracy of financial risk prediction compared to 
traditional approaches and provides robust risk 
assessment capabilities across different financial 
scenarios. This research not only enriches the theoretical 
foundation of financial risk management but also offers 
practical technical solutions for financial risk 
management and control across institutional boundaries 
in cloud-based environments. 

2.Related Work 

Traditional Financial Risk Assessment Models 

Traditional financial risk assessment models have 

evolved substantially over the years, incorporating 

various methodologies to identify and manage potential 

financial threats. Literature  proposes a financial risk 

management system that integrates multiple data 

sources, achieving centralized management and 

efficient data processing through cloud computing 

platforms. This approach addresses data dispersion and 

processing efficiency issues in traditional systems[5]. 

The risk prediction function within conventional 

systems requires enhancement to meet modern financial 

complexities. Research in focuses on innovation in risk 

prediction algorithms, proposing a machine learning-

based prediction model trained on historical data to 

accurately forecast future financial risks. While this 

model demonstrates improved predictive capabilities, 

its adaptability in complex and rapidly changing 

financial market environments remains a subject for 

further validation[29]. 

Statistical models form another cornerstone of 

traditional risk assessment frameworks. The binary 

logistic regression model has been widely adopted for 

studying financial crises[30], with the net cash flow from 

operating activities serving as a determinant for 

financial crisis prediction. Multiple financial indicators 

including main business cost rate, cost profit rate, and 

asset-liability ratios are commonly employed to monitor 
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financial risks, providing a comprehensive view of an 

organization's financial health. These indicators allow 

for the construction of safety warning methods based on 

danger signs, though the effectiveness varies across 

different financial contexts and market conditionsError! 

Reference source not found.. 

Cloud Computing in Financial Services 

Cloud computing has transformed financial services 

by offering powerful data processing capabilities and 

flexible resource allocation[6]. Various business models 

exist in cloud computing applications for financial 

services, including Software as a Service (SaaS), 

Platform as a Service (PaaS), and Infrastructure as a 

Service (IaaS)[7]. Each model presents distinct 

advantages for financial risk control systems. SaaS has 

emerged as a predominant business model in cloud 

computing for financial applications, providing 

comprehensive services encompassing software, data, 

and information management. This model enables 

financial institutions to access sophisticated risk 

assessment tools without significant infrastructure 

investments[8]. 

The application of cloud computing in financial risk 

management systems has produced notable 

improvements in operational efficiency. Research 

demonstrates that when the data scale remains constant 

during financial risk processing[9], cloud computing 

methods require less computational time and exhibit 

higher computing speeds compared to traditional 

approaches. This efficiency gain substantially enhances 

risk control capabilities. Performance comparisons 

between cloud-based and traditional systems reveal that 

conventional algorithms face decreasing operational 

speeds as calculation requirements increase, while cloud 

computing solutions maintain stable performance with 

shorter operation times. Under conditions of maximum 

data flow, traditional algorithms may require over 90 

seconds with reduced accuracy, while cloud-based 

systems operate in approximately 60 seconds, 

delivering both speed and reliability benefits for 

financial risk assessment[10]. 

Federated Learning Approaches for Privacy-Preserving 

Data Analysis 

Federated learning has emerged as a promising 

approach for privacy-preserving data analysis in 

financial contexts. ROCFL represents a robust clustered 

federated learning method designed to address data 

heterogeneity challenges. This approach amplifies the 

disparity in weight allocation between models trained on 

different quality data, effectively managing the inherent 

variations in data quality across financial institutions[11]. 

The methodology employs an optimal clustering 

matching mechanism that groups clients with similar 

data distributions, allowing for the derivation of optimal 

clustering models without predetermined cluster 

quantities[12]. This adaptive clustering capability proves 

particularly valuable for financial risk assessment 

involving diverse institutional data sources. 

Privacy preservation stands as a critical 

consideration in multi-institutional financial data 

analysis. Through federated learning approaches, data 

remains localized while model training occurs 

collaboratively across institutions[13]. The personalized 

weight allocation strategy assigns weight benchmarks to 

each cluster based on cluster importance indices, 

effectively mitigating the negative impacts of low-

quality data during model aggregation. This approach 

ensures that institutions with high-quality financial data 

contribute proportionally more to the global model 

while still incorporating insights from all participating 

entities. The federated aggregation strategy grounded in 

a sampling approach ensures unbiased sampling in 

heterogeneous data environments while significantly 

reducing computational and communication 

overhead[14]. These characteristics make federated 

learning particularly suitable for financial risk 

assessment applications where both data privacy and 

model performance are paramount considerations. 

3.The FedRisk Framework Architecture 

System Overview and Design Principles 

The FedRisk framework is designed as a 

comprehensive solution for multi-institutional financial 

risk assessment that leverages federated learning on 

cloud platforms. The system architecture consists of 

three main layers: the data layer, the federated learning 

layer, and the cloud service layer. The data layer 

manages the distributed financial data across 

participating institutions, the federated learning layer 

handles the collaborative model training while 

preserving privacy, and the cloud service layer provides 

the infrastructure and computational resources 

necessary for system operation. This layered 

architecture ensures clear separation of concerns while 

maintaining efficient communication between 

components[15]. 
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The design principles of FedRisk emphasize data 

privacy, computational efficiency, model accuracy, and 

system scalability. Data privacy is preserved through the 

federated learning paradigm where raw financial data 

never leaves the local institutional boundaries. 

Computational efficiency is achieved through optimized 

resource allocation on the cloud platform, allowing for 

flexible scaling of computational resources based on 

institutional needs. Model accuracy is maintained 

through sophisticated aggregation algorithms that 

effectively combine knowledge from diverse financial 

institutions without compromising the quality of risk 

assessment. System scalability is ensured by the 

modular design that allows for seamless integration of 

new institutions into the federated learning process[16]. 

Table 1 presents the key components of the FedRisk 

architecture and their primary functions within the 

system. The table illustrates how each component 

contributes to the overall framework operation, 

highlighting the interconnections between different 

architectural elements. 

Table 1: FedRisk Architecture Components and Functions 

Component Layer Primary Function Secondary Function 

Data Preprocessing 
Module 

Data Layer 
Data cleaning and 
normalization 

Feature extraction 

Local Risk Model 
Federated Learning 
Layer 

Local model training Parameter extraction 

Global Aggregator 
Federated Learning 
Layer 

Model parameter aggregation 
Convergence 
monitoring 

Knowledge Repository Cloud Service Layer Storing aggregated knowledge Historical data analysis 

Task Scheduler Cloud Service Layer Coordination of training rounds Resource allocation 

Security Manager Cross-Layer 
Encryption of model 
parameters 

Access control 

Performance Monitor Cross-Layer System performance tracking 
Bottleneck 
identification 

The federated learning process in FedRisk follows a 

cyclical pattern of local training, parameter sharing, 

global aggregation, and model distribution. This cycle 

repeats until convergence criteria are met, resulting in a 

global risk assessment model that benefits from the 

collective knowledge of all participating institutions 

without compromising data privacy[17]. Table 2 shows 

the performance comparison between centralized and 

federated approaches under different data distributions. 

Table 2: Performance Comparison of Centralized and Federated Approaches 

Metric Centralized Approach FedRisk Framework Improvement (%) 

Training Time (hours) 24.3 8.7 64.2 



 

Journal of Advanced Computing Systems (JACS)  ISSN: 3066-3962 

 

 60 

Communication Cost (GB) 156.8 12.3 92.2 

Prediction Accuracy (%) 87.2 92.6 6.2 

Risk Detection Rate (%) 78.5 89.3 13.8 

False Positive Rate (%) 12.7 7.4 41.7 

Computational Resources (CPU hours) 2340 1680 28.2 

Storage Requirements (TB) 5.8 0.9 84.5 

 

Fig. 1. FedRisk Framework Architecture Overview 

The FedRisk framework architecture diagram 

depicts the hierarchical organization of system 

components across the three main layers. The data layer 

at the bottom shows multiple financial institutions, each 

with their own data repositories and local model training 

infrastructure. The federated learning layer in the 

middle illustrates the secure parameter exchange 

mechanism and the global aggregation server[18]. The 

cloud service layer at the top displays the distributed 

computing resources, task scheduling system, and 

global knowledge repository. Arrows between 

components indicate data and parameter flows, with 

solid lines representing direct communication and 

dashed lines showing encrypted parameter transfers. 

The diagram uses a color-coded scheme where blue 

represents data components, green indicates learning 

components, and purple shows cloud service 

elements[19]. 

Federated Learning Component for Multi-institutional 

Risk Data 

The federated learning component of FedRisk is 

specifically designed to handle the heterogeneous nature 

of financial risk data across multiple institutions. This 

component implements a novel approach to parameter 

aggregation that accounts for data quality variations 

while ensuring fair contribution from all participating 

entitiesError! Reference source not found.. The aggregation 

algorithm incorporates a weighting mechanism based on 

data quality metrics and institution-specific risk 
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profiles, allowing for more accurate global model 

construction. 

The process begins with local training at each 

financial institution using their proprietary data. The 

local models are trained using a standardized 

architecture, but with flexibility to accommodate 

institution-specific features and risk indicators. Once 

local training is complete, only the model parameters—

not the raw data—are shared with the global aggregation 

server. Before transmission, these parameters undergo 

differential privacy treatments to add noise, preventing 

potential reverse engineering attacks that might 

compromise data privacy[20]. 

Table 3 presents the comparison of different 

aggregation strategies implemented and tested within 

the FedRisk framework. The evaluation metrics include 

convergence speed, model quality, and communication 

efficiency. 

Table 3: Comparison of Aggregation Strategies in FedRisk 

Aggregation Strategy 
Convergence 

(rounds) 

Model Quality 

Score 

Communication 

Efficiency 

Privacy Preservation 

Level 

Simple Averaging 87 76.4 High Medium 

Weighted Averaging 72 83.2 Medium Medium 

Federated Averaging 58 89.7 Medium High 

FedRisk Dynamic 

Weighting 
43 94.3 High Very High 

FedRisk with Secure 

Aggregation 
46 93.8 Medium Extreme 

4.Risk Assessment Methodology and Model Design 

Financial Risk Indicators and Feature Selection 

The selection of appropriate financial risk indicators 

represents a critical foundation for effective risk 

assessment within the FedRisk framework. Financial 

risk indicators must capture the multidimensional nature 

of institutional financial health while remaining 

computationally tractable within a federated learning 

environment. Our framework incorporates a 

comprehensive set of 14 financial indicators across 

various dimensions, including profitability, liquidity, 

operational efficiency, and solvency metrics. These 

indicators are systematically extracted from financial 

statements and market data, providing a holistic view of 

institutional risk profilesError! Reference source not found.. 

The feature selection process employs principal 

component analysis (PCA) to identify the most relevant 

indicators for risk assessment. Through extensive 

analysis using the Bartlett test method and evaluation of 

cumulative variation coefficients, we extracted five 

common factors from the original 14 financial 

indicators[21]. As shown in Table 4, these five common 

factors explain 80.383% of the total variance, 

demonstrating strong representative capability. The 

extraction of these factors significantly reduces 

dimensionality while preserving the essential risk-

related information, optimizing computational 

efficiency in the federated learning process. 

 

 

Table 4: Total Variance Explanation 
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Element 
Initial 

Eigenvalues 

Variance Percentage 

(%) 

Sum of Squares of Rotating 

Loads 

Variance Percentage 

(%) 

t1 5.261 37.583 3.119 22.275 

t2 3.241 23.147 2.679 19.136 

t3 1.244 8.886 2.453 17.522 

t4 1.032 7.371 2.136 15.257 

t5 0.944 6.744 - - 

t6 0.678 4.841 - - 

t7 0.600 4.286 - - 

t8 0.541 3.861 - - 

t9 0.426 3.046 - - 

t10 0.289 2.065 - - 

t11 0.157 1.122 - - 

t12 0.076 0.546 - - 

t13 0.066 0.469 - - 

t14 0.028 0.200 - - 

Table 5 details the specific financial indicators 

utilized in enterprise financial crisis risk monitoring. 

These indicators span various aspects of financial 

performance, providing a comprehensive basis for risk 

assessment across multiple institutions. The inclusion of 

both standardized financial metrics and institution-

specific indicators enables the model to capture both 

common risk patterns and unique risk factors relevant to 

specific financial entities. 

Table 5: Enterprise Financial Crisis Risk Monitoring Indicators 

Indicator Type Index Name Indicator Variables 
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Financial Indicator 

Main business cost rate t1 

Cost profit rate t2 

Net profit margin t3 

Net asset return rate t4 

Main business income growth rate t5 

Net profit growth rate t6 

Net asset growth rate t7 

Current ratio t8 

Quick ratio t9 

Cash ratio t10 

Financial Indicator 

Asset-liability ratio t11 

Net cash flow from operations to sales revenue ratio t12 

Operating cash flow return rate on assets t13 

Net cash flow from operations to liabilities ratio t14 

Fig. 2 illustrates the correlation matrix of financial 

indicators, revealing the complex interrelationships that 

inform our feature selection process. 

Fig. 2. Financial Indicator Correlation Heatmap 
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The heatmap visualization displays a symmetrical 

matrix showing correlation coefficients between all 14 

financial indicators. The color gradient ranges from dark 

blue (strong negative correlation) through white (no 

correlation) to dark red (strong positive correlation). 

The diagonal elements show perfect self-correlation 

(value of 1.0) and appear as a dark red line. Cluster 

patterns are visible in the heatmap, particularly among 

liquidity indicators (t8, t9, t10) which show strong 

positive correlations with each other, and profitability 

indicators (t2, t3, t4) forming another distinct cluster[22]. 

The asset-liability ratio (t11) exhibits negative 

correlations with most liquidity indicators, represented 

by blue squares in those intersection points. The 

visualization includes numerical values within each cell, 

allowing for precise interpretation of correlation 

strengths. 

Federated Model Training and Parameter Aggregation 

The federated model training process in FedRisk 

employs a sophisticated approach that balances local 

model performance with global knowledge integration. 

Each financial institution trains its local risk assessment 

model using proprietary data and the selected financial 

indicators[23]. The training process follows a binary 

logistic regression model structure, where the 

possibility of a company experiencing financial crisis 

serves as the dependent variable and the financial 

indicators form the independent variables. 

The logistic regression model is formulated as shown 

in equation (1): 

G = 1 / (1 + exp[-(γ₀ + γ₁t₁ + γ₂t₂ + ... + γₙtₙ)])      (1) 

Where G represents the probability of financial crisis 

occurrence under the influence of n factors, and γᵢ 

coefficients indicate the degree of influence each 

financial indicator exerts on the likelihood of financial 

crisis. The logarithmic transformation of this equation 

yields the linear model in equation (2): 

Logistic G = γ₀ + γ₁t₁ + γ₂t₂ + ... + γₙtₙ      (2) 

Parameter aggregation in the federated setting 

presents unique challenges due to data heterogeneity 

across institutions. FedRisk implements a novel 

weighted aggregation strategy that considers both the 

quantity and quality of data at each institution. Table 6 

presents the performance comparison of different 

parameter aggregation methods evaluated within the 

FedRisk framework. 

Table 6: Comparison of Parameter Aggregation Methods 

Aggregation Method 
Convergence 

Rate 
Accuracy 

Privacy 

Level 

Communication 

Cost 

Risk Detection F1 

Score 

Simple Average Medium 82.4% High Low 0.78 

Weighted by Data Size Fast 85.7% High Low 0.83 

Weighted by Data 

Quality 
Slow 89.3% High Medium 0.87 

Adaptive Weighting Medium 88.1% High Medium 0.85 

FedRisk Dynamic 

Weighting 
Fast 91.2% Very High Medium 0.90 

Fig. 3 depicts the convergence behavior of different aggregation strategies over training rounds, highlighting the 

superior performance of the FedRisk approach. 

Fig. 3. Convergence Analysis of Parameter Aggregation Methods 
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The graph shows the model loss plotted against 

federated learning rounds for five different parameter 

aggregation methods. The x-axis represents the number 

of training rounds (0-100), while the y-axis shows the 

loss value (0-2.5). Each method is plotted with a distinct 

color and line style. The FedRisk Dynamic Weighting 

method (shown in solid red) demonstrates the fastest 

convergenceError! Reference source not found., reaching a loss 

value below 0.5 within 40 rounds. Simple Average 

(dashed blue) shows the slowest convergence pattern, 

maintaining higher loss  

values throughout the training process. Weighted by  

Data Size (dotted green), Weighted by Data Quality 

(dash-dot purple), and Adaptive Weighting (solid 

orange) display intermediate convergence 

performances. The graph includes a shaded area around 

each line representing the variance across five 

independent training runs, with FedRisk showing the 

smallest variance band, indicating more consistent 

performance across different data distributions. A 

logarithmic scale is used for the y-axis to better visualize 

differences in the lower loss region. 

5.Experiments and Results 

Experimental Setup and Evaluation Metrics 

Our experimental evaluation of the FedRisk 

framework was conducted using real financial data from 

70 companies in the Chinese stock market as research 

samples. Financial indices for each company were 

obtained from Sina Finance. The financial risk status of 

a company was determined by examining the negative 

cash flow from operating activities, with 23 companies 

classified as normal and 27 companies in a financially 

dangerous state. The initial preprocessing phase 

involved testing and normalizing missing data values, 

eliminating companies with incomplete data, and 

replacing them with other companies having complete 

data. Standardization methods were applied to remove 

scale effects from the financial indicators[24]. 

The experiments were executed on a distributed 

cloud computing platform with the configuration details 

presented in Table 7[25]. The evaluation environment 

consisted of multiple IBM POWER8 and POWER9 

servers, alongside Intel Xeon Platinum 8160 processors 

for distributed processing tasks. The computational 

resources were allocated across different nodes to 

simulate the federated nature of multi-institutional risk 

assessment in real-world scenarios. 
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Table 7: Experimental Environment Configuration 

Hardware Component Specification Quantity Function 

CPU IBM POWER8 16 threads Model training 

CPU IBM POWER9 32 processes Aggregation 

CPU Intel Xeon Platinum 8160 128 threads Evaluation 

Memory 256GB DDR4 4 units Data processing 

Network Connection 10Gbps Ethernet - Parameter transfer 

Storage 4TB NVMe SSD 8 units Data storage 

GPU NVIDIA V100 4 units Acceleration 

To comprehensively evaluate the performance of 

FedRisk, we employed multiple evaluation metrics that 

address various aspects of financial risk prediction 

capabilities. Table 8 outlines the primary metrics used 

in our experimental evaluation, along with their 

mathematical definitions and significance in the context 

of financial risk assessment[26]. 

Table 8: Evaluation Metrics Used in Experiments 

Metric Mathematical Definition Value Range Significance 

Accuracy (TP + TN) / (TP + TN + FP + FN) [0, 1] Overall correctness 

Precision TP / (TP + FP) [0, 1] Exactness of predictions 

Recall TP / (TP + FN) [0, 1] Completeness of predictions 

F1-Score 2 × (Precision × Recall) / (Precision + Recall) [0, 1] Harmonic mean of precision and recall 

AUC-ROC Area under ROC curve [0, 1] Discrimination ability 

AUC-PR Area under Precision-Recall curve [0, 1] Performance with imbalanced data 

G-Mean √(Sensitivity × Specificity) [0, 1] Balanced performance measure 
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The principal component analysis method was 

utilized to reduce correlation coefficients among the 

main economic indicators. Through standardized data 

preprocessing, we applied SPSS25 for PCA analysis, 

obtaining the Bartlett test results, cumulative 

coefficients of variation for each evaluation indicator, 

and the curl matrix for indicators[27]. Fig. 4 presents the 

distribution of eigenvalues and cumulative variance 

explanation across principal components. 

Fig. 4. Principal Component Analysis Results 

The figure displays a dual-axis plot representing 

eigenvalue distribution and cumulative variance 

explanation across principal components. The x-axis 

represents the 14 principal components (t1-t14), while 

the primary y-axis (left) shows eigenvalues ranging 

from 0 to 6, and the secondary y-axis (right) displays 

cumulative variance percentage from 0% to 100%. Blue 

bars represent individual eigenvalues for each 

component, with t1 having the highest value (5.261)[28], 

followed by a sharp decline for subsequent components. 

The red line with circular markers shows the cumulative 

variance explanation, starting at 37.58% for t1 and 

progressively increasing to reach 100% at t14. A 

horizontal dashed line marks the 80% cumulative 

variance threshold, which is reached at component t5, 

indicating that the first five components explain 

approximately 80.38% of the total variance. This 

visualization justifies the selection of five common 

factors from the original 14 financial indicators for 

model development. 

Performance Comparison with Baseline Methods 

The performance of the FedRisk framework was 

evaluated against several baseline methods, including 

traditional centralized approaches and existing 

federated learning solutions. Table 9 presents the 

comparative results across multiple evaluation metrics, 

highlighting the superior performance of FedRisk in 

terms of accuracy, recall, and overall risk prediction 

capabilities. 

Table 9: Performance Comparison with Baseline Methods 

Method 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 
F1-Score AUC-ROC AUC-PR 

Centralized Logistic 

Regression 
87.6 82.3 75.4 0.787 0.892 0.793 

Random Forest (Centralized) 89.2 86.1 79.3 0.826 0.908 0.847 
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Traditional Federated 

Averaging 
84.5 81.2 76.8 0.789 0.876 0.812 

FedProx 86.9 83.7 78.1 0.808 0.894 0.836 

SCAFFOLD 88.3 84.2 80.5 0.823 0.912 0.854 

FedRisk (Our Method) 93.7 89.8 88.3 0.890 0.947 0.915 

The experimental results demonstrate that FedRisk 

outperforms both centralized and existing federated 

learning approaches across all evaluation metrics. The 

improvement is particularly significant in recall (88.3%) 

and F1-Score (0.890), indicating enhanced ability to 

identify companies at risk of financial crisis. This 

performance advantage stems from the effective 

integration of federated learning with specialized 

financial risk assessment methodologies and the 

knowledge graph-based relationship modeling. 

Fig. 5 illustrates the ROC curves and precision-recall 

curves for FedRisk compared to baseline methods, 

providing a visual representation of the performance 

differences. 

Fig. 5. ROC and Precision-Recall Curves Comparison

 

The figure consists of two subplots side by side. The 

left subplot shows the Receiver Operating Characteristic 

(ROC) curves for all methods, plotting True Positive 

Rate (sensitivity) against False Positive Rate (1-

specificity). The right subplot displays Precision-Recall 

curves, plotting Precision against Recall. Both plots use 

line styles and colors to distinguish between methods: 

FedRisk (solid red), SCAFFOLD (dashed blue), 

FedProx (dotted green), Traditional Federated 

Averaging (dash-dot purple), Random Forest (dashed 

orange), and Centralized Logistic Regression (dotted 

black). In the ROC plot, all curves start at the origin 

(0,0) and end at (1,1), with FedRisk's curve showing the 

greatest convexity toward the top-left corner, indicating 

superior classification performance. The area under 

each curve (AUC-ROC) values are displayed in the 

legend. The Precision-Recall plot similarly shows 

FedRisk maintaining higher precision values across 

recall levels compared to other methods. A diagonal 

reference line appears in the ROC plot, representing 

random classification performance. Confidence 

intervals (shown as light-colored bands around each 

curve) are narrowest for FedRisk, suggesting more 

stable performance across different test samples. 

Robustness and Efficiency Analysis 

The robustness of FedRisk was evaluated under 

various challenging conditions, including data 

heterogeneity, communication constraints, and privacy 

attacks. Table 10 presents the performance degradation 
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of different methods under increasing levels of data 

heterogeneity, measured by the Kullback-Leibler 

divergence between client data distributions. 

Table 10: Performance Under Increasing Data Heterogeneity 

Method 
KL Divergence = 

0.1 

KL Divergence = 

0.5 

KL Divergence = 

1.0 

KL Divergence = 

2.0 

Traditional Federated 

Averaging 
-2.3% -8.7% -15.4% -26.8% 

FedProx -1.8% -7.2% -12.9% -21.5% 

SCAFFOLD -1.5% -6.4% -11.2% -18.7% 

FedRisk (Our Method) -0.9% -3.8% -7.6% -12.3% 

The results indicate that FedRisk exhibits 

significantly lower performance degradation as data 

heterogeneity increases, maintaining acceptable 

accuracy even under severe non-IID conditions. At the 

highest heterogeneity level (KL Divergence = 2.0), 

FedRisk shows a performance drop of only 12.3%, 

compared to 26.8% for traditional federated averaging. 

Computational efficiency analysis was conducted to 

evaluate the scalability of FedRisk in realistic 

deployment scenarios. Fig. 6 illustrates the system 

throughput comparison between FedRisk and traditional 

approaches. 

Fig. 6. System Throughput Comparison 

The figure presents a multi-line graph comparing 

system throughput (measured in MB/s on the y-axis) 

against the number of threads or processes (x-axis, 

ranging from 1 to 160 on a logarithmic scale). Four 

different configurations are represented: IBM 

POWER8, IBM POWER9, Intel Xeon Platinum 8160, 

and FedRisk (combined approach). Each configuration 

is plotted with a different color and marker style. The 

graph shows that throughput increases with the number 

of threads for all configurations, but with different 

scaling patterns. FedRisk demonstrates superior 

throughput, especially at higher thread counts, 
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maintaining approximately 25,000-30,000 MB/s 

average throughput compared to traditional systems 

averaging around 21,400 MB/s. Performance peaks are 

observed between 32-64 threads, after which 

diminishing returns become evident for most 

configurations. A secondary y-axis shows the relative 

speedup compared to the baseline single-thread 

performance. The visualization includes error bars 

representing standard deviation from multiple test runs, 

with FedRisk showing the smallest variance, indicating 

more consistent performance across test cases. 

The communication efficiency of FedRisk was 

analyzed by measuring the total data transfer 

requirements during model training and aggregation. 

Table 11 compares the communication overhead of 

different methods in terms of total transferred data 

volume per round and convergence rounds required. 

Table 11: Communication Efficiency Comparison 

Method 
Data Transferred per 

Round (MB) 

Rounds to 

Convergence 

Total Communication 

Cost (GB) 

Relative 

Efficiency 

Traditional Federated 

Averaging 
12.8 87 1.09 1.00× 

FedProx 12.8 72 0.90 1.21× 

SCAFFOLD 25.6 58 1.45 0.75× 

FedRisk (Parameter 

Compression) 
4.3 43 0.18 6.06× 

FedRisk (Knowledge 

Graph) 
3.5 46 0.16 6.81× 

The analysis reveals that FedRisk achieves 

substantially improved communication efficiency 

through parameter compression and knowledge graph-

based knowledge representation, requiring only 0.16-

0.18 GB of total data transfer compared to 0.90-1.45 GB 

for baseline methods. This represents a 6-7× 

improvement in communication efficiency, making 

FedRisk suitable for deployment in bandwidth-

constrained environments.. 
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