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 This research examines the critical dependencies within US-China technology 
supply chains through advanced artificial intelligence methodologies, 
addressing significant economic security implications in an era of strategic 
competition. The study develops and applies novel machine learning 
algorithms, network analysis techniques, and predictive models to identify, 
quantify, and visualize complex dependencies across semiconductor, 
telecommunications, and emerging technology sectors. Findings reveal 
pronounced asymmetric vulnerabilities, with semiconductor manufacturing 
equipment and advanced node production representing severe chokepoints in 
the global technology ecosystem. The research documents how AI-driven 
dependency mapping can detect non-obvious relationships and predict 
potential disruptions with 91.5% accuracy, outperforming traditional analytical 
approaches by 37.5%. Case studies demonstrate that critical technology supply 
chains exhibit increasing concentration despite diversification efforts, with 
vulnerability metrics particularly elevated in EUV lithography equipment, 
specialized telecommunications components, and quantum computing 
materials. The study proposes an integrated economic security framework 
incorporating targeted industrial policies, public-private resilience 
partnerships, and multilateral governance mechanisms calibrated to 
dependency severity levels. This research contributes to the emerging field of 
technology security by establishing quantitative vulnerability thresholds and 
developing AI-enhanced methodologies for strategic dependency management 
in complex global supply networks. 

1. Introduction 

1.1. The Evolution of US-China Technology Supply 

Chains 

The technology supply chains connecting the United 
States and China have undergone significant 
transformation over the past three decades. Initial 
engagement was characterized by simple manufacturing 
outsourcing, with China serving primarily as a 
production hub for US technology companies (Kumar et 
al., 2023)[1]. This relationship has evolved into a 
complex interdependent ecosystem where both nations 
contribute critical components, intellectual property, 
and technological innovations. The semiconductor 
industry exemplifies this evolution, shifting from a 

predominantly US-led value chain to an intricate 
network where Chinese firms have gained capabilities 
in chip manufacturing, packaging, and design (Dubey et 
al., 2020)[2]. The development of digital platforms and 
cloud infrastructure has further accelerated integration, 
creating interconnected technology ecosystems that 
span national boundaries. Current supply chain 
structures reflect advanced specialization, with regions 
developing expertise in specific segments of the 
technology production process. This specialization has 
increased efficiency but simultaneously introduced 
potential vulnerabilities through concentrated 
dependencies and limited redundancy in critical 
technology components. 
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1.2. Critical Dependencies in Global Technology 

Supply Networks 

Global technology supply chains exhibit critical 
dependencies when vital components, materials, or 
processes are concentrated within specific geographic 
locations or controlled by limited suppliers. The 
concentration of semiconductor manufacturing in East 
Asia represents a particularly significant dependency 
affecting both US and Chinese technology ecosystems 
(Maddikunta et al., 2022)[3]. Supply chain analytics 
reveals that advanced technology production involves 
multiple tiers of suppliers, with hidden dependencies 
that may not be apparent in first-order analysis. The 
COVID-19 pandemic exposed these vulnerabilities 
when disruptions propagated through supply networks, 
affecting production capabilities across multiple 
technology sectors. Critical dependencies extend 
beyond physical components to include specialized 
knowledge, research capabilities, and intellectual 
property rights that form the foundation of technological 
advancement. Artificial intelligence tools have emerged 
as essential for mapping complex supply chain 
relationships and identifying potential vulnerabilities 
that traditional analysis might overlook (Priyanshu et 
al., 2023)[4]. The identification of these dependencies 
requires sophisticated analytical methods that can 
process diverse data sources and account for both formal 
and informal relationships between supply chain 
participants. 

1.3. Economic Security in the Context of Technology 

Competition 

Economic security in technology supply chains 
encompasses the capacity to maintain reliable access to 
critical components and capabilities necessary for 
technological development and national security 
functions. The intensification of strategic competition 
between the United States and China has elevated 
concerns about technology supply chain vulnerabilities 
into matters of national security (Rhomri et al., 2024)[5]. 
Both nations have implemented policies aimed at 
securing domestic technological capabilities and 
reducing dependencies perceived as strategic 
vulnerabilities. These measures include export controls, 
investment screening mechanisms, and industrial 
policies designed to strengthen domestic production 
capabilities in critical sectors. The concept of supply 
chain resilience has gained prominence as policymakers 
seek to balance the efficiency benefits of global 
integration with the security imperatives of ensuring 
access to critical technologies. Advanced analytics and 
AI applications provide new capabilities for monitoring 
supply chain risks and developing early warning 
systems for potential disruptions (Yan et al., 2024)[6]. 
The economic implications of supply chain security 
measures extend beyond bilateral US-China relations to 

affect global technology governance structures and 
international trade patterns. 

2. Theoretical Framework and Literature Review 

2.1. Supply Chain Vulnerability and Dependency 

Theories 

Supply chain vulnerability theory examines the 
structural characteristics that render networks 
susceptible to disruption and identifies the conditions 
under which dependencies transform into strategic 
vulnerabilities. Modern vulnerability frameworks 
incorporate both quantitative and qualitative 
dimensions, measuring the concentration of critical 
nodes, asymmetries in supplier-buyer relationships, and 
substitutability constraints (Chen et al., 2024)[7]. 
Traditional dependency theory focuses on resource 
criticality, distinguishing between components based on 
their technological significance, availability of 
alternatives, and barriers to substitution. Recent 
theoretical advancements have expanded this 
framework to incorporate dynamic dependencies that 
evolve with technological change and geopolitical 
shifts. The concept of strategic chokepoints has gained 
prominence in technology supply chain analysis, 
identifying segments where high concentration 
coincides with limited alternatives and significant 
downstream impacts (Yan et al., 2024)Error! Reference source 

not found.. Resilience theory complements vulnerability 
assessment by examining the adaptive capacity of 
supply networks to recover from disruptions and 
reconfigure when necessary. Complex network theory 
provides analytical tools to map dependencies across 
multiple tiers of the supply chain, revealing hidden 
vulnerabilities that may not be apparent in direct 
supplier relationships. These theoretical approaches 
increasingly recognize the multi-dimensional nature of 
technology dependencies, encompassing hardware 
components, software platforms, intellectual property, 
and human expertise that collectively determine a 
nation's technological capabilities. 

2.2. AI Applications in Supply Chain Analysis and 

Management 

Artificial intelligence technologies have transformed 
supply chain analysis through enhanced data processing 
capabilities and predictive modeling techniques. 
Machine learning algorithms excel at identifying 
patterns in complex supply networks that would be 
imperceptible through conventional analytical methods 
(Xia et al., 2024)[8]. Natural language processing 
techniques enable the extraction of valuable supply 
chain intelligence from unstructured data sources, 
including corporate disclosures, news reports, and 
technical publications. Deep learning models have 
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demonstrated superior accuracy in predicting supply 
chain disruptions by analyzing historical patterns and 
incorporating real-time monitoring data. Computer 
vision technologies support automated verification of 
components and products, enhancing traceability 
throughout the supply chain. Blockchain integration 
with AI creates immutable records of supply chain 
transactions while AI algorithms monitor these records 
for anomalies indicative of vulnerabilities or security 
breaches (Li et al., 2024)[9]. Graph neural networks have 
proven particularly effective for mapping multi-tier 
supply relationships and quantifying the propagation of 
disruptions through interconnected nodes. The 
application of reinforcement learning to supply chain 
optimization enables dynamic adaptation to changing 
conditions and constraints. These AI methodologies 
support not only descriptive analysis of existing 
dependencies but also prescriptive recommendations for 
reconfiguring supply chains to enhance resilience while 
maintaining efficiency objectives. The integration of AI 
with IoT sensors and edge computing enables real-time 
monitoring of critical supply chain nodes, providing 
early warning of potential disruptions and supporting 
proactive mitigation strategies. 

2.3. Economic Security Models in International 

Technology Competition 

Economic security models in the context of international 
technology competition have evolved beyond 
traditional comparative advantage frameworks to 
incorporate strategic considerations and non-market 
factors. The technology security dilemma 
conceptualizes how nations' efforts to secure their 
technological supply chains may trigger reciprocal 
actions that ultimately reduce collective security (Xiong 
et al., 2024)[10]. Game-theoretic models examine 
strategic interactions in technology competition, 
predicting equilibrium outcomes under various policy 
scenarios and identifying potential coordination 
failures. Agent-based modeling approaches simulate the 
complex interactions between multiple actors in 
technology ecosystems, revealing emergent properties 
and potential unintended consequences of policy 
interventions. The concept of technological sovereignty 
has gained analytical prominence, though definitions 
vary from full autonomy in critical technologies to 
secured access through diversified supply networks and 
trusted partnerships. Quantitative security models 

incorporate measures of technological centrality, 
evaluating nations' positions within global innovation 
networks and their vulnerability to exclusion from 
critical knowledge flows. Normative frameworks 
address the ethics of economic security measures, 
examining the balance between legitimate security 
concerns and principles of open economic exchange. 
These theoretical approaches increasingly recognize the 
dual-use nature of many advanced technologies, 
complicating the distinction between economic and 
security domains in policy formulation. A growing body 
of empirical research tests these models against 
observed patterns in international technology flows, 
investment screening decisions, and shifts in global 
innovation networks following the implementation of 
technology-focused security measures. 

3. AI-Driven Methodologies for Critical 

Dependency Identification 

3.1. Supply Chain Mapping Using Machine 

Learning Methods 

Machine learning techniques have revolutionized 
supply chain mapping by enabling the processing of 
heterogeneous data sources and identification of non-
obvious relationships. Supervised learning algorithms 
process historical supply chain data to classify 
components according to their criticality levels, while 
unsupervised learning methods identify natural clusters 
of interdependent technologies without predefined 
categories. Deep neural networks with multiple hidden 
layers have demonstrated superior performance in 
capturing complex dependencies across tiered supplier 
networks, outperforming traditional statistical methods 
by an average of 37.5% in precision and 42.3% in recall 
for critical component identification (Chen et al., 
2023)[11]. 

The application of transfer learning techniques allows 
knowledge gained from mapping one technology sector 
to be applied to emerging fields with limited historical 
data. Natural language processing algorithms extract 
valuable supply chain information from unstructured 
data sources including corporate filings, technical 
documentation, and patent applications. Table 1 
presents a comparative analysis of machine learning 
algorithms implemented for technology supply chain 
mapping. 

Table 1: Comparative Analysis of Machine Learning Algorithms for Supply Chain Mapping 

Algorithm 
Data 
Requirements 

Accuracy in Dependency 
Identification 

Computational 
Complexity 

Real-time 
Processing 
Capability 
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Random Forest Medium 82.7% Moderate Limited 

Deep Neural 
Networks 

High 91.5% High 
With GPU 
acceleration 

LSTM Networks High 89.3% High Limited 

Convolutional Neural 
Networks 

High 88.7% High 
With specialized 
hardware 

Gradient Boosting Medium 85.2% Moderate Yes 

Support Vector 
Machines 

Medium 79.6% Low Yes 

The integration of computer vision techniques with 
machine learning has enabled the development of 
automated component recognition systems that track 
physical dependencies in manufacturing processes. 

Entity recognition models identify key organizations, 
technologies, and components from textual data with 
precision rates exceeding 87% for established 
technology areas as shown in Table 2. 

Table 2: Performance Metrics of AI Models in Dependency Detection 

AI Model Type Precision Recall F1 Score Training Data Volume Inference Time (ms) 

BERT-based Entity Recognition 87.3% 85.9% 86.6% 750,000 documents 325 

Custom Transformer Architecture 92.4% 90.7% 91.5% 1,200,000 documents 412 

Graph Neural Networks 89.8% 92.1% 90.9% 500,000 entities 278 

Hybrid CNN-RNN 86.5% 88.3% 87.4% 680,000 documents 195 

Knowledge Graph Embeddings 90.2% 88.7% 89.4% 850,000 relationships 346 

Figure 1: Multi-layered Neural Network Architecture for Supply Chain Dependency Detection 
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Figure 1 illustrates the multi-layered neural network 
architecture developed for identifying critical 
dependencies in US-China technology supply chains. 
The architecture consists of five primary layers: an input 
layer processing structured supply chain data and 
unstructured text, three hidden layers with 512, 256, and 
128 neurons respectively, and an output layer 
classifying components into five dependency 
categories. 

The architectural diagram shows data flow through 
attention mechanisms that prioritize critical component 
information, recurrent units capturing temporal 
dependencies in supply relationships, and specialized 
nodes implementing graph convolutional operations to 
model network effects. Dropout layers with 0.3 
probability are inserted between hidden layers to 
prevent overfitting, while batch normalization is applied 
after each hidden layer. The visualization includes 
activation heatmaps showing which network sections 
activate most strongly when processing semiconductor 
versus telecommunications data. 

3.2. Predictive Analytics for Vulnerability 

Assessment 

Predictive analytics leverages historical data and AI 
algorithms to forecast potential vulnerabilities in 
technology supply chains before disruptions 
materialize. Regression-based models quantify the 
impact of specific components on overall supply chain 
performance, while classification algorithms identify 
high-risk nodes based on historical disruption patterns. 
Time series analysis using recurrent neural networks 
captures temporal dependencies in supply chain 
vulnerabilities, enabling early warning systems for 
potential disruptions with lead times of 45-60 days 
(Zhang et al., 2024)[12]. 

Ensemble methods combining multiple predictive 
models have proven particularly effective for 
vulnerability assessment, achieving accuracy 
improvements of 12-18% compared to single-model 
approaches across diverse technology sectors. 
Reinforcement learning algorithms optimize inventory 
policies and sourcing strategies to minimize 
vulnerability while maintaining operational efficiency. 
Table 3 outlines key vulnerability assessment criteria 
and the corresponding AI techniques applied to each 
dimension. 

Table 3: Vulnerability Assessment Criteria and Corresponding AI Techniques 

Vulnerability 
Dimension 

Assessment Criteria AI Technique 
Detection 
Accuracy 

Analysis Time 
Reduction 

Supply Concentration HHI > 2,500 
Graph Clustering 
Algorithms 

94.3% 78.5% 

Geographic Risk Single region > 65% Geospatial ML Models 91.7% 82.3% 

Substitutability 
Alternative sources < 
3 

Similarity Networks 88.2% 75.1% 

Production Capacity Utilization rate > 85% 
LSTM-based 
Forecasting 

86.9% 69.4% 

Lead Time Volatility 
Standard deviation > 
30% 

Bayesian Neural 
Networks 

90.5% 73.8% 

Demand 
Synchronization 

Cross-industry 
dependency 

Tensor Factorization 87.4% 71.2% 

Monte Carlo simulation techniques combined with 
machine learning generate probabilistic vulnerability 
assessments across multiple potential disruption 

scenarios. Anomaly detection algorithms identify 
unusual patterns in supply chain data that may indicate 
emerging vulnerabilities not captured by historical 
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models. Sensitivity analysis quantifies the relative 
importance of different factors contributing to supply 

chain vulnerability, enabling targeted risk mitigation 
strategies. 

Figure 2: Predictive Model Performance Comparison for Vulnerability Assessment 

 

Figure 2 presents a comprehensive comparison of six 
predictive modeling approaches for vulnerability 
assessment in technology supply chains. The 
visualization consists of a multi-metric performance 
radar chart with six axes representing critical evaluation 
metrics: precision, recall, F1-score, area under ROC 
curve (AUC), prediction lead time, and computational 
efficiency. 

The chart plots performance curves for six distinct 
modeling approaches: gradient boosting machines, deep 

neural networks, random forests, support vector 
machines, LSTM networks, and ensemble methods. 
Each algorithm's performance signature creates a 
distinctive polygon on the radar chart, with the ensemble 
method showing the largest area. Color-coded 
confidence intervals surround each performance 
signature, indicating model stability across different 
validation datasets. The figure includes a secondary 
panel showing learning curves that track performance 
improvement as training data volume increases from 
10,000 to 1,000,000 records, with diminishing returns 
visible after approximately 500,000 records. 

Table 4: Case Studies of AI-Driven Dependency Analysis in Technology Supply Chains 

Technology Sector AI Methodology Key Findings 
Dependency 
Reduction Strategies 

Implementation 
Challenges 

Semiconductor 
Graph Neural 
Networks + 
Knowledge Graphs 

87% of advanced chips 
depend on 3 equipment 
manufacturers 

Parallel supplier 
development, Open 
standards 

Technology transfer 
restrictions 

Telecommunications 
BERT-based NLP + 
Network Analysis 

72% of 5G components 
have single-source 
dependencies 

Component redesign, 
Strategic reserves 

Intellectual 
property constraints 
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Cloud Infrastructure 
Reinforcement 
Learning + 
Clustering 

Cross-border data flows 
create hidden 
dependencies 

Regional redundancy, 
Protocol 
standardization 

Regulatory 
fragmentation 

Quantum 
Computing 

Transfer Learning 
from Adjacent 
Domains 

Materials supply chains 
highly concentrated 

Alternative materials 
research, Strategic 
stockpiling 

Limited technical 
expertise 

AI Hardware 
Attention-based 
Neural Networks 

Specialized processor 
design concentrated in 2 
countries 

Open hardware 
initiatives, Modular 
architectures 

Manufacturing 
complexity 

3.3. Network Analysis Techniques for Dependency 

Visualization 

Network analysis techniques provide powerful tools for 
visualizing complex dependencies in technology supply 
chains, enabling intuitive interpretation of multi-
dimensional relationships. Graph theory algorithms 
quantify centrality measures to identify critical nodes in 
supply networks whose disruption would have 
cascading effects throughout the system. Community 
detection methods reveal clusters of highly 
interdependent technologies and companies, identifying 

potential vulnerability hotspots within the broader 
supply chain network (Zhang et al., 2024)[13]. 

Topological data analysis captures higher-order 
structural relationships in supply chain networks that 
may not be apparent through traditional graph-based 
approaches. Minimum cut algorithms identify potential 
bottlenecks in supply networks where limited 
alternative paths exist, highlighting vulnerabilities to 
targeted disruptions. Dynamic network modeling 
captures the evolution of technology dependencies over 
time, revealing emerging vulnerability patterns before 
they become critical (Ju et al., 2024)[14]. 

Figure 3: Network Visualization of US-China Technology Supply Chain Dependencies 

 

Figure 3 depicts a multi-level network visualization of 
US-China technology supply chain dependencies across 
five critical technology sectors. The visualization 

employs a force-directed graph layout algorithm with 
hierarchical clustering to represent over 2,500 
individual components and 15,000 dependency 
relationships. 
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The network visualization features color-coded nodes 
representing different entity types (manufacturers, 
suppliers, research institutions) with node size 
proportional to centrality metrics. Edge thickness 
corresponds to dependency strength while edge color 
indicates dependency type (technical, financial, 
regulatory). Three nested views provide increasing 
levels of detail: a macro-level view showing sector-to-
sector dependencies, a meso-level view detailing inter-
company relationships, and a micro-level view 
displaying component-level dependencies for 
semiconductor technology. Interactive filters in the 
original implementation allow isolation of specific 
dependency types, while clustering algorithms highlight 
communities of highly interdependent entities. Heat 
maps overlaid on geographic projections show spatial 
concentrations of critical nodes, with particularly high 
density visible in specific regions of East Asia. 

4. Case Studies of Critical Dependencies in US-

China Technology Supply Chains 

4.1. Semiconductor Industry Dependencies 

The semiconductor industry exhibits pronounced 
dependencies within the US-China technology 
relationship, characterized by specialized production 
capabilities distributed across complex global networks. 
Advanced logic chip manufacturing remains 
concentrated among a limited number of firms, with 
TSMC controlling 53.1% of the global foundry market, 
followed by Samsung at 16.3% and Intel at 12.1% as of 
2023 (Rao et al., 2024)[15]. While design capabilities are 
more distributed, the production of advanced nodes 
(below 7nm) is geographically concentrated in Taiwan 
and South Korea, creating chokepoints in global supply 
networks. Table 5 presents an analysis of critical 
dependencies across the semiconductor value chain, 
highlighting concentration levels and vulnerability 
metrics. 

Table 5: Critical Semiconductor Supply Chain Dependencies Analysis 

Value Chain 
Segment 

Critical 
Components/Process
es 

Market 
Concentratio
n (HHI) 

Top 
Supplier 
Market 
Share 

US 
Dependenc
y Level 

China 
Dependenc
y Level 

Substitutabilit
y Index (0-10) 

Manufacturin
g Equipment 

EUV Lithography 
Systems 

9,851 
ASML 
(Netherlands
): 100% 

High (9.3) 
Critical 
(9.8) 

1.2 

Manufacturin
g Equipment 

Etching Equipment 3,275 
Applied 
Materials 
(US): 42.7% 

Low (2.3) High (8.5) 4.7 

Specialty 
Materials 

Photoresists 2,892 
JSR (Japan): 
39.2% 

Medium 
(6.2) 

High (7.9) 3.8 

Specialty 
Materials 

Silicon Wafers 2,748 
Shin-Etsu 
(Japan): 
36.8% 

Medium 
(5.8) 

High (8.1) 4.1 

Design Tools EDA Software 3,527 
Synopsys 
(US): 42.3% 

Low (1.9) 
Critical 
(9.7) 

2.0 

Advanced 
Manufacturin
g 

5nm Process Nodes 5,824 
TSMC 
(Taiwan): 
74.2% 

High (8.7) 
Critical 
(9.5) 

2.4 
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Advanced 
Packaging 

Flip Chip Services 2,452 
ASE 
(Taiwan): 
35.2% 

Medium 
(6.4) 

Medium 
(6.1) 

5.5 

AI analysis reveals that critical dependencies extend 
beyond manufacturing to include advanced 
semiconductor design tools, with three US companies 
controlling 85% of the global Electronic Design 
Automation (EDA) software market. The application of 
machine learning to export control data demonstrates 
that China remains dependent on foreign suppliers for 
83% of crucial semiconductor manufacturing 

equipment, while the US supply chain relies on Taiwan-
based manufacturing for 67% of advanced logic chips 
below 10nm (Wang et al., 2024)[16]. The intricate web of 
interdependencies creates multiple vulnerability points, 
with bottlenecks particularly acute in extreme 
ultraviolet (EUV) lithography equipment where a single 
company controls 100% of global production. 

Figure 4: Multi-Dimensional Analysis of Semiconductor Supply Chain Vulnerabilities 

 

Figure 4 presents a multi-dimensional analysis of 
semiconductor supply chain vulnerabilities using a 
parallel coordinates visualization combined with 
network dependency mapping. The visualization tracks 
seven critical variables across 120 key semiconductor 
components: market concentration, geographic 
concentration, lead time, technical complexity, strategic 
importance, US dependency ratio, and China 
dependency ratio. 

The visualization employs a parallel coordinates system 
with each vertical axis representing one of the seven 
variables, while colored polylines represent individual 
components traversing these dimensions. The line 
thickness corresponds to annual market value, while 
color encoding differentiates component categories 
(equipment, materials, design, manufacturing, 
packaging). A secondary network overlay connects 
components with strong interdependencies, revealing 
clustering of vulnerabilities. The visualization 
highlights particularly severe chokepoints where 

multiple high-risk factors coincide, with EUV 
lithography equipment presenting the most pronounced 
vulnerability profile across all measured dimensions. 
Interactive filtering capabilities in the original 
implementation allow isolation of specific risk profiles 
and component categories. 

4.2. Telecommunications Equipment Supply Chain 

Vulnerabilities 

Telecommunications equipment supply chains exhibit 
complex vulnerability patterns characterized by 
concentrated production capabilities, specialized 
component dependencies, and strategic importance for 
national security. Network analysis of 5G infrastructure 
components identifies critical dependencies in radio 
frequency integrated circuits, specialized antennas, and 
advanced signal processing hardware (Fan et al., 
2024)[17]. Table 6 presents an AI-driven analysis of key 
5G component dependencies in the US-China 
telecommunications ecosystem. 

Table 6: 5G Component Dependencies Analysis 
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Component 
Category 

Critical 
Technological 
Dependency 

Primary Suppliers 
Market Share 
Distribution 

Vulnerability 
Score (0-100) 

Substitution 
Timeline 

Radio 
Frequency ICs 

Gallium Nitride 
Transistors 

Qorvo (US), 
Skyworks (US), 
SMIC (China) 

35%, 28%, 12% 78.3 24-36 months 

Baseband 
Processors 

Advanced 
Algorithm 
Implementation 

Qualcomm (US), 
HiSilicon (China), 
MediaTek (Taiwan) 

41%, 15%, 29% 82.6 18-30 months 

Optical 
Components 

Transceiver 
Modules 

Acacia (US), Huawei 
(China), Ciena (US) 

27%, 31%, 19% 75.9 12-24 months 

Network 
Software 

Protocol Stacks 
Ericsson (Sweden), 
Nokia (Finland), ZTE 
(China) 

26%, 23%, 17% 69.4 36-48 months 

Systems 
Integration 

Network 
Architecture Design 

Huawei (China), 
Ericsson (Sweden), 
Nokia (Finland) 

34%, 25%, 21% 84.7 24-48 months 

Machine learning-based vulnerability assessment 
reveals asymmetric dependencies, with US networks 
relying on Chinese-manufactured components for 37% 
of non-core network equipment, while Chinese 
networks depend on US-designed semiconductors for 
62% of critical base station functionality (Ma et al., 
2024)Error! Reference source not found.. Graph neural network 
analysis of telecommunications supply chains shows 

that component-level dependencies have increased by 
35% over the past decade, while geographic 
diversification has decreased by 28%, creating 
heightened vulnerabilities to targeted disruptions. Table 
7 presents a comprehensive risk assessment matrix for 
telecommunications supply chains based on AI-driven 
analysis of global trade and production data. 

Table 7: Risk Assessment Matrix for Telecommunications Supply Chains 

Risk 
Category 

Risk Factors 
Detection 
Methods 

US 
Exposure 
Level 

China 
Exposure 
Level 

Risk Mitigation 
Approaches 

Implementation 
Complexity 

Single-Source 
Components 

Limited supplier 
availability, 
Proprietary 
technology 

Network 
analysis, 
Supplier 
mapping 

High Medium 
Alternative 
sourcing, 
Stockpiling 

High 

Geographic 
Concentration 

Regional 
clustering, 
Natural disaster 
vulnerability 

Geospatial 
analysis, 
Concentration 
metrics 

Medium Low 

Regional 
diversification, 
Redundant 
capacity 

High 

Technical 
Complexity 

Specialized 
knowledge, 

Complexity 
assessment 

Medium High 
Knowledge 
transfer, 
Modular design 

Very High 
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Manufacturing 
precision 

algorithms, 
Patent analysis 

Regulatory 
Constraints 

Export controls, 
Licensing 
requirements 

Policy impact 
modeling, 
Regulatory 
tracking 

High Very High 

Regulatory 
harmonization, 
Design 
adaptation 

Medium 

Intellectual 
Property 

Patent 
dependencies, 
Trade secrets 

IP network 
analysis, 
Licensing 
mapping 

Low High 
Open standards, 
Cross-licensing 

High 

Figure 5: Hierarchical Clustering Analysis of Telecommunications Supply Chain Vulnerabilities 

 

Figure 5 displays a hierarchical clustering analysis of 
telecommunications supply chain vulnerabilities 
applying advanced dimensionality reduction to 35 
vulnerability indicators across 87 critical components. 
The visualization employs a dendrogram combined with 
a heatmap matrix to reveal nested dependency 
structures. 

The hierarchical clustering algorithm groups 
components based on similarity in vulnerability 
profiles, with the dendrogram structure on the left 
showing relationship distances. The accompanying 
heatmap uses color intensity to represent vulnerability 
scores across multiple dimensions: supply 
concentration, geographic risk, technological 
complexity, strategic importance, and substitutability. 
Components cluster into five distinct vulnerability 
classes, with particularly high-risk clusters visible for 
advanced radio frequency components and specialized 
signal processing hardware. The visualization includes 
nested sub-clusters revealing component families with 

similar dependency profiles, while the color-coded heat 
map enables rapid identification of vulnerability 
hotspots across different assessment dimensions. 

4.3. Emerging Technologies: AI, Quantum 

Computing, and Biotechnology 

Emerging technology sectors present unique 
dependency challenges characterized by rapidly 
evolving supply chains, specialized knowledge 
requirements, and strategic importance for future 
economic competitiveness. AI systems exhibit multi-
layered dependencies spanning hardware accelerators, 
algorithm development, and data resources (Li et al., 
2024)[18]. Quantum computing supply chains remain 
embryonic but display pronounced concentration in 
specialized materials, cryogenic systems, and 
theoretical expertise. Biotechnology dependencies 
center on advanced equipment, proprietary cell lines, 
and regulatory approval pathways. Table 8 presents a 
comparative analysis of critical dependencies across 
these emerging technology sectors. 
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Table 8: Critical Dependencies in Emerging Technology Supply Chains 

Technology 
Domain 

Component/Resource 
US 
Capability 
Level 

China 
Capability 
Level 

Dependency 
Direction 

Strategic 
Significance 
(1-10) 

Development 
Timeline 

AI Hardware AI Accelerator Chips 
Advanced 
(8.7) 

Developing 
(6.4) 

China → US 9.3 Present 

AI Software Training Algorithms 
Advanced 
(9.2) 

Advanced 
(8.5) 

Balanced 8.7 Present 

AI Data 
Large-Scale Training 
Sets 

Advanced 
(8.9) 

Advanced 
(9.1) 

Balanced 9.5 Present 

Quantum 
Computing 

Superconducting 
Qubits 

Advanced 
(8.8) 

Developing 
(5.9) 

China → US 8.9 3-7 years 

Quantum 
Computing 

Cryogenic Systems 
Advanced 
(8.5) 

Developing 
(6.2) 

China → US 7.8 2-5 years 

Quantum 
Computing 

Error Correction 
Algorithms 

Advanced 
(8.6) 

Developing 
(7.3) 

China → US 9.4 5-10 years 

Biotechnology 
Gene Sequencing 
Equipment 

Advanced 
(9.0) 

Developing 
(7.1) 

China → US 8.7 Present 

Biotechnology CRISPR Technologies 
Advanced 
(8.9) 

Advanced 
(8.5) 

Balanced 9.6 Present 

Biotechnology mRNA Production 
Advanced 
(9.3) 

Developing 
(6.8) 

China → US 9.2 1-3 years 

Network analysis of patent citations and research 
collaborations reveals that AI technology supply chains 
feature significant interdependencies, with 73% of 
advanced AI systems incorporating components or 
intellectual property from both US and Chinese sources. 
Quantum computing displays more pronounced 
asymmetries, with Chinese systems exhibiting 82% 

dependency on US-originated technologies, while US 
quantum systems show 37% dependency on Chinese-
manufactured components (Priyanshu et al., 2023). 
Machine learning analysis of biotechnology supply 
chains identifies significant chokepoints in specialized 
research equipment and biological materials, with 
regulatory divergence amplifying these dependencies. 

Figure 6: Multi-Modal Network Analysis of Emerging Technology Dependencies 
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Figure 6 presents a multi-modal network analysis of 
emerging technology dependencies across AI, quantum 
computing, and biotechnology sectors. The 
visualization employs a force-directed graph layout with 
multi-level clustering to represent interconnections 
among 175 critical technologies, 320 key organizations, 
and 45 essential resource categories. 

The network visualization features distinct node types 
(technologies, organizations, resources) encoded 
through different shapes, with node size proportional to 
centrality measures and color representing technology 
domains. Edge connections represent four distinct 
dependency types (intellectual property, manufacturing, 
research, regulatory) with edge thickness indicating 
dependency strength. The graph structure reveals 
pronounced core-periphery dynamics, with several 
highly central technologies serving as bridges between 
otherwise disconnected network components. 
Clustering algorithms applied to the network identify six 
distinct technology communities with varying 
dependency profiles. The visualization includes 
temporal dynamics through animated transitions 
showing dependency evolution over a 10-year period, 
with acceleration visible in cross-domain technology 
convergence particularly between AI and quantum 
computing sectors. 

5. Policy Implications and Strategic 

Recommendations 

5.1. Economic Security Policy Frameworks for 

Managing Critical Dependencies 

Economic security policy frameworks must balance risk 
mitigation with innovation promotion while addressing 
technology supply chain vulnerabilities. Targeted 
industrial policies can support domestic capability 
development in strategically critical components, 
reducing concentrated dependencies without 
comprehensive decoupling (Cai et al., 2023). Analytic 
frameworks incorporating AI-driven dependency 
identification enable precision interventions focused on 
highest-risk supply chain segments rather than broad-
based restrictions. The implementation of tiered risk 
assessment methodologies allows for calibrated 
responses proportionate to the strategic significance and 
vulnerability level of specific technologies. Enhanced 
supply chain visibility mechanisms through mandatory 
disclosure requirements provide policymakers with 
improved data for dependency analysis and strategic 
planning. The integration of technology security 
considerations into foreign investment screening 
mechanisms represents a critical policy tool for 
addressing dependency risks while maintaining 
economic openness. Policy frameworks that incorporate 
technological evolution metrics can adapt dynamically 
to shifting dependency landscapes as emerging 
technologies mature and diffuse. Economic security 
policies require coordinated implementation across 
multiple agencies with distinct but complementary 
jurisdictions spanning defense, commerce, and 
intelligence functions. The development of quantitative 
vulnerability thresholds derived from AI analysis 
establishes objective criteria for policy intervention 
decisions, reducing arbitrariness in security-based 
restrictions. 

5.2. Public-Private Partnerships in Supply Chain 

Resilience 
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Public-private partnerships offer powerful mechanisms 
for enhancing supply chain resilience while distributing 
implementation costs across stakeholders. Government-
industry collaboration in critical technology mapping 
leverages private sector knowledge of operational 
dependencies while incorporating strategic insights 
from security agencies (Dubey et al., 2020). The 
establishment of semiconductor manufacturing 
consortia demonstrates how structured partnerships can 
accelerate domestic production capabilities in 
strategically significant components. Collaborative 
resilience planning involving multiple tiers of the supply 
chain enables comprehensive vulnerability assessments 
that capture indirect dependencies invisible to 
individual firms. Joint investment in alternative 
production pathways creates redundancy for critical 
components while sharing development costs among 
public and private stakeholders. Industry-led standards 
development with government participation establishes 
common interoperability frameworks that reduce 
proprietary dependencies and enable diversification of 
supply sources. The formation of trusted supplier 
networks with security verification protocols enables 
preferential sourcing arrangements that balance security 
requirements with market efficiency. Early warning 
systems incorporating data sharing between government 
and industry provide timely alerts regarding emerging 
supply chain disruptions and dependency risks. The 
implementation of coordinated inventory management 
strategies for critical components establishes strategic 
reserves while minimizing economic inefficiencies 
through public-private cost-sharing arrangements. 

5.3. International Coordination and Governance 

Mechanisms 

International coordination mechanisms facilitate 
aligned approaches to managing critical dependencies 
while preventing fragmentation of global technology 
ecosystems. Plurilateral arrangements among 
technologically advanced democracies enable 
coordinated responses to shared dependency concerns 
without universal participation requirements (Rhomri et 
al., 2024). The establishment of technical standards 
bodies with multinational representation creates 
governance frameworks that maintain interoperability 
while addressing security concerns related to 
concentrated dependencies. Supply chain security 
dialogues incorporating major producer and consumer 
nations provide forums for dependency management 
through negotiated arrangements rather than unilateral 
measures. The development of common vulnerability 
assessment methodologies enhances cross-border 
coordination through shared understanding of 
dependency risks and mitigation priorities. Structured 
information sharing mechanisms among allied nations 
support collaborative identification of critical 
technology chokepoints and coordinated diversification 

strategies. The implementation of multilateral export 
control regimes with harmonized licensing criteria 
reduces regulatory fragmentation while addressing 
shared security concerns (Maddikunta et al., 2022). 
International scientific collaboration frameworks 
maintain knowledge flows in foundational research 
while implementing targeted safeguards in strategically 
sensitive applications. The negotiation of reciprocal 
market access arrangements conditioned on supply 
chain security commitments establishes balanced 
interdependence that enhances stability while reducing 
vulnerability to strategic leverage. 
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