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 In 2019, video transmission traffic made up 60.6% of overall Internet downlink 
traffic.  In the future, with the rapid development of 4K/8K, AR/VR, 
holographic communication, smart city, intelligent transportation, and other 
technologies, network video transmission demand and traffic will be further 
inspired.  In addition, the number of video users on the Internet has maintained 
a rapid growth tendency, not only due to the rapid improvement of traditional 
network bandwidth but also because the quick expansion of mobile Internet 
has further stimulated the potential of the video transmission market. This 
paper designs a video transmission optimization strategy that takes 
reinforcement learning and edge computing (TORE) to improve the video 
transmission efficiency and quality of experience.  Specifically, first, we design 
the popularity prediction model for video requests based on the RL 
(reinforcement learning) and introduce the adaptive video encoding method for 
optimizing the efficiency of computing resource distribution.  Second, we 
design a video caching strategy, which adopts EC (edge computing) to reduce 
the redundant video transmission.  Last, simulations are conducted, and the 
experimental results fully demonstrate the improvement of video quality and 
response time. 

1. Introduction 

With the rapid development of Internet technology, the 
global demand for video content has surged, driven by 
applications such as real-time streaming, live 
broadcasting, and online gaming. These applications 
require low latency and high bandwidth, posing 
significant challenges to traditional network 
architectures. The best-effort packet forwarding model 
of the Internet struggles to meet these demands due to 
issues like transmission redundancy, inefficient 
resource utilization, and lack of coordination between 
end-users and network components. [1]To address these 
challenges, researchers have explored various 
optimization approaches, including Information-Centric 
Networking (ICN) and Content Delivery Networks 
(CDNs). However, these solutions face limitations such 
as high deployment costs, limited coverage, and an 
inability to adapt dynamically to network conditions. 

Recent advancements in adaptive bitrate (ABR) 
algorithms and edge computing have shown promise in 
improving video transmission efficiency and user 
Quality of Experience (QoE). ABR algorithms 
dynamically adjust video bitrates based on available 
bandwidth, reducing buffering and improving user 
satisfaction. However, traditional ABR strategies often 
focus on local optimization, which may not guarantee 
global network resource utilization. Meanwhile, edge 
computing platforms, located closer to end-users, enable 
global optimization of video delivery by leveraging 
enhanced sensing, storage, and computational 
capabilities. These platforms can address the limitations 
of traditional CDNs and ABR algorithms, providing 
real-time adaptation to network dynamics and 
improving overall QoE. 

In this context, this paper proposes a novel video content 
distribution optimization framework based 
on reinforcement learning (RL)[2]. Unlike traditional 
static optimization methods, RL enables continuous 
learning and adaptation, allowing for real-time 
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adjustments to content distribution strategies. The 
primary objective of this research is to design an 
intelligent CDN optimization framework that improves 
video transmission efficiency, reduces latency, and 
enhances user QoE, particularly under high-load and 
complex network conditions. By integrating 
reinforcement learning with edge computing, this work 
bridges the gap between adaptive optimization and 
global resource utilization, offering a scalable and 
dynamic solution for modern video delivery challenges. 

 Related Work 

2.1. Optimization of Transmission Architecture 

To enhance network transmission efficiency, 
researchers have developed various optimization 
algorithms targeting the limitations of the traditional 
best-effort packet forwarding mode. These algorithms 
aim to address key issues such as transmission 

redundancy and the lack of coordination between end-
side and network-side operations. The ultimate goal is 
to create a comprehensive video transmission 
optimization scheme that leverages advancements in 
network architecture and transmission protocols. 

One significant development in this area is the Content-
Centric Network (CCN), proposed by Lv in 2009 as a 
novel Internet architecture that shifts the focus from 
host-centric to content-centric communication. CCN is 
a prominent example of Information-Centric 
Networking (ICN), which redefines network 
communication by prioritizing information over 
traditional IP-based packet switching. ICN introduces 
mechanisms like content labeling and network caching 
to minimize redundancy and enhance the efficiency of 
video transmission. Among the various ICN 
implementations, CCN stands out due to its robust 
naming, routing, distribution, and caching mechanisms 
[3-4].  

Figure 1. illustration of CCN routing mechanism. 

Key technologies in CCN include name-based content 
routing, facilitated by the Forwarding Information Base 
(FIB) and Pending Interest Table (PIT), and network 
caching, which allows routers to store content and 
employ diverse replacement strategies. Recent 
advancements in CCN and ICN have further optimized 
these mechanisms, integrating machine learning for 
intelligent caching and adaptive routing, thereby 
pushing the boundaries of network efficiency and 
scalability. One of the key technologies of CCN is 
name-based content routing[5]. The implementation of 
name-based content routing includes two main modules: 
forwarding information base (FIB) and pending interest 
table (PIT), which are shown in Figure 1. FIB is able to 

forward interest messages to nodes that may cache 
corresponding data. Another key technology of CCN is 
network caching. The router in CCN can achieve a 
content storage module (as shown in Figure 1), which is 
similar to the buffer space in the IP network, but it can 
have different content replacement strategies. 

2.1.1. Content Distribution Network 

Related schemes of Information-Centric Networking 
(ICN) have shown potential in improving the efficiency 
of network video transmission. However, their 
implementation in the current Internet infrastructure 
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remains challenging in the short term. As a result, 
application-layer solutions like Content Distribution 
Networks (CDNs) have become the dominant approach 
for optimizing video transmission. CDNs are widely 
adopted by content service providers globally, including 
Akamai in the United States, as well as domestic 
providers like Netresidence Technology and Blue Flood 
in China. Additionally, major cloud service providers 
such as Alibaba Cloud and Tencent offer robust CDN-
based content acceleration services. 

CDNs function as platforms for accelerated content 
distribution, enabling content providers (CPs) to deliver 

video and other media efficiently. CDN service 
providers deploy multiple cloud platforms and Points of 
Presence (PoPs) across regions or even globally. By pre-
positioning content (e.g., high-volume video files) at 
these PoPs, CDNs ensure that user requests are 
redirected to the nearest PoP through DNS-based 
canonical name resolution[6]. This approach 
significantly reduces the bandwidth demands on the 
backbone network and minimizes redundant data 
transmission between CDN cloud platforms and PoPs, 
thereby enhancing overall network transmission 
efficiency. 

Figure 2. Illustration of CDN architecture 

 

For instance, platforms like YouTube, which handle 
massive video traffic, rely heavily on CDNs to deliver 
content seamlessly to billions of users worldwide. 
YouTube's video transmission strategy leverages CDN 
infrastructure to pre-cache popular videos at edge 
servers, ensuring low latency and high-quality 
streaming. This not only reduces the load on YouTube's 
central servers but also optimizes bandwidth usage 
across the network. As video consumption continues to 
grow, CDNs play a critical role in meeting the 
increasing demand for efficient and scalable video 
transmission.As shown in Figure 2, from the 
perspective of content transmission, CDN can greatly 
decrease the bandwidth requirements of the backbone 
network and eliminate huge redundant transmission 
between CDN cloud platforms and CDN PoPs, so as to 
improve the network transmission efficiency[7]. In 
addition, CDN is closed and independent based on the 
application layer, where content service providers and 
network service providers cannot participate in the 
optimization of content distribution, so the available 
communication and joint optimization mode between 
the network side and the end side are impossible to form. 

2.2 Video Transmission Optimization Algorithm   

The rapid growth of video traffic, driven by platforms 
like YouTube, Netflix, and TikTok, has made 
optimizing video transmission essential for maintaining 
high-quality user experiences. Video traffic now 
dominates global internet usage, accounting for over 
60% of total bandwidth, with trends pointing toward 
further increases due to the adoption of higher-
resolution formats like 4K and 8K. To address the 
challenges of dynamic network conditions and diverse 
user demands, researchers have developed advanced 
optimization algorithms, including adaptive bitrate 
adjustment and edge computing-based solutions.   

A key approach to improving video transmission is the 
Adaptive Bitrate (ABR) algorithm, which dynamically 
adjusts video quality based on real-time network 
conditions to minimize buffering and enhance user 
Quality of Experience (QoE). ABR algorithms aim to 
balance video quality and playback smoothness by 
adapting to available bandwidth. However, configuring 
ABR parameters to account for varying network states 
and user system characteristics remains a significant 
challenge. To address this, MIT’s research team 
introduced Pensieve, a reinforcement learning-based 
ABR scheme[8]. As shown in Figure 2, Pensieve 
leverages machine learning to intelligently adjust video 
bitrates, eliminating the need for manual parameter 
tuning and demonstrating superior performance in real-

https://onlinelibrary.wiley.com/doi/full/10.1155/2021/6258200#fig-0002
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world applications. Despite its advancements, end-
based ABR strategies like Pensieve are limited by their 
local optimization focus, as each client independently 

adjusts its request policy without considering the global 
utilization of network bandwidth resources.   

 

Figure 3. Reinforcement learning-based intelligent pensive-ABR mechanism. 

To overcome these limitations, edge computing has 
emerged as a transformative solution for intelligent 
video transmission. Edge computing platforms, 
positioned close to end-users, enable global 
optimization of video transmission for multiple users 
sharing bottleneck bandwidth. These platforms leverage 
their sensing, storage, and computational capabilities to 
reduce transmission redundancy, improve bandwidth 
utilization, and mitigate dynamic network jitter. Recent 
studies have proposed joint bitrate optimization 
mechanisms based on edge computing, utilizing deep 
learning to make intelligent decisions.  

These schemes outperform traditional end-based QoE 
optimization methods by achieving higher overall QoE 
and more efficient resource allocation. For example, 
edge computing can pre-process and cache popular 
video content at edge servers, as illustrated in Figure 2, 
reducing latency and bandwidth demands on the core 
network. This is particularly beneficial for live 
streaming and real-time video applications, where low 
latency and high reliability are critical. By combining 
local adaptability with global resource management, 
edge computing and ABR algorithms represent a 
promising direction for optimizing video transmission 
in the face of ever-growing traffic demands.In literature 
[9-10], the authors proposed joint bitrate optimization 
mechanisms based on edge computing. These schemes 
make intelligent joint bitrate decisions through deep 
learning. Compared with the traditional end-based QoE 
optimization mechanism, the optimization scheme 
based on edge computing has prominent advantages in 
terms of total QoE. 

Video Transmission Optimization Based on RL and 

EC 

3.1. Cloud-Based Intelligent Video Coding 

Mechanism 

The video is increasingly popular as a core experience 
of people’s online activities. Only on Facebook, more 
than 8 billion videos are viewed every day. The client 
downloads videos from the cloud server of the video 
provider by ABR to watch videos. The ABR algorithm 
can dynamically select the highest bitrate that the 
network bandwidth can support and avoid the jam 
phenomenon during watching. Higher bitrate can 
provide higher video quality, but it also results in more 
video transmissions, so the end-to-end connection with 
the higher bandwidth is required for clients. 

When the original videos are uploaded, different basic 
bitrate versions of the videos are generated [11], which 
consumes huge computing resources. In the network 
video transmission, there are more than 100 video 
resolutions, and the same resolution also contains 
multiple different video bitrates, so the number of 
potential output types of video bitrates is large. By 
default, FFmpeg is used to encode the video uploaded to 
the server into a small number of standard versions. 
More computation can improve the user’s video viewing 
experience by improving the coding performance 
(decreasing the amount of transmitted data for the same 
video quality) or increasing the coding selection 
(providing more fine-grained bitrate selection to adapt 
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to the dynamic network bandwidth). However, the 
computing power of video coding in the cloud is limited, 
and it is impossible to generate enough coding versions 
for all videos. Therefore, dynamically allocating 
appropriate coding power to the cloud among different 
videos to achieve the optimal global user experience is 
one of the problems to be solved in the network video 
transmission. 

In this paper, we propose a cloud-based intelligent video 
coding mechanism with popularity consideration, 
assigning computing power and encoding bitrate 
versions of videos according to the popularity. 
However, the popularity of videos in the real situation is 
extremely imbalanced, where less than 1% of the videos 
contribute more than 80% of the time spent in viewing, 
so the imbalance is very obvious. This feature is of great 
value to computing power allocation for cloud dynamic 
coding. In the cloud, the highest quality coding or more 
customized bitrate versions are produced on demand for 
a small number of the most popular videos, so that the 
overall video viewing quality can be significantly 
improved with only a small amount of computing 
power. 

3.1.1. Prediction of Video Popularity Based on 

Reinforcement Learning 

Analysis and prediction of video popularity are required 
for targeting cloud coding based on the feature of high 
concentration of video watching. In our scheme, the 
request processing logging mode is in charge of logging 
the sequence of video user requests, including video ID, 
request bitrate, request time, terminal parameters (such 
as resolution), etc. The popularity prediction should 
have following characteristics: first, the prediction 
should be quick, so that it can decrease the number of 
missing video requests; second, the prediction should be 
accurate, which can ensure that the computing is 
consumed on the most valuable videos; and third, the 
prediction should be scalable to analyze and predict 
massive request records. 

The popularity prediction methods proposed in papers 
[12-14] mainly aimed at the analysis and prediction of 
popularity at the day level. These methods need great 
prediction delay, and the goal of this paper is to quickly 
predict the popularity at the minute level, so it is very 
important to design a fast-incremental popularity 
prediction algorithm. To be able to further maintain 
stability and adaptability to network dynamics, we use 
reinforcement learning to predict the popularity of 
videos. 

Video requests that occurred in the past time t will have 
an impact on the popularity of future moment T, which 
is represented by f (T-t). f is a function of probability 
distribution defined on the space [0, +∞], which is 

generally monotonically decreasing. Therefore, in 
principle, the more recent the visit, the greater the effect 
on the popularity, and the effect of a particular visit on 
the popularity gradually converges to zero over time. 
For a video, tirepresents the time of the visit i; and the 
total number of times to watch the video in the future 
time T can be calculated by the following formula: 

(1) 

The key problem is to set the core probability density 
function f to make incremental update possible, so as to 
accelerate the process of video popularity prediction. 
Previous works [15] used power law distribution as the 
probability density function to predict the popularity. 
However, a complete calculation is required to solve the 
popularity every time in this method, which greatly 
decreases the prediction speed and affects the timeliness 
of the popularity feedback. In this paper, we use 
exponential distribution as the probability density 
function, which can largely reduce the computations 
needed for the popularity prediction, and is expressed as 
follows: 

(2) 

where w indicates the range of the time window for 
future impact, and it mainly serves to remove visits 
made long ago, which have minimal effect on the 
accuracy of popularity prediction and can be ignored. 
For a video, we suppose T2 is the present request time 
of the video to trigger the present popularity upgrade, 
and T1 is the last request time of the request. 

Experimental Simulation and Result Analysis 

4.1. Setups 

To prove the effectiveness and efficiency of the 
mechanism, simulations are conducted based on four 
parts: video data, mechanism settings, video requests, 
and comparison simulations. 

4.1.1. Video Data 

We use 1000 videos for simulations, and 25 new videos 
will incrementally be uploaded every 1 s during the 
experiments. For each video, 10 blocks are contained, 
and the playing time of each block is 2 s. 

https://onlinelibrary.wiley.com/doi/full/10.1155/2021/6258200#bib-0016
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4.1.2. Mechanism Settings 

(1) Computing power model setting: CPU computing 
power is set to 400 cores. With a single-core CPU 
computing power, the video encoding time for each 
bitrate is uniformly set to 5 s, which means that the 
cloud computing power could handle 80 video encoding 
missions at a second. 

(2) Regular transcoding power distribution setting: The 
encoding range of the video is considered {180p, 240p, 
360p, 480p, 540p, 720p, 960p, 1080p}. All of these, 
except for the regular coding, are used as potential on-
demand custom coding requirements, triggered by the 
popularity of user requests. By default, the original 
videos are encoded as 360p and 720p bitrates. Since the 
beginning of the experiment, the regular encoding of all 
new videos is required, and this approach allocates 1/2 
of the computing power to regular encoding. 

(3) Edge computing platform: The cache capacity is 
configured depending on the storage capacity of 400 
videos with the bitrate of 180p. If 360p is targeted, the 
platform is able to cache 200 videos, and so on. The 
transmission latency between the edge and the user is 
5 ms, and the transmission latency from the cloud to the 
edge platform is 200 ms. 

(4) Network bandwidth setting: Assuming that no 
bandwidth bottleneck exists between the edge and the 

user, and the downlink traffic between the cloud video 
platform and the edge platform can transmit 400 video 
blocks (each video has 10 video blocks) with the bitrate 
of 480p per second. For 960p, only 200 video blocks can 
be completed per second, and so on. 

4.1.3. Video Requests 

Video requests distribution setting: The user chooses a 
video according to the Zipf (parameter 1.07) probability 
distribution to request and randomly chooses a bitrate 
from {180p, 240p, 360p, 480p, 540p, 720p, 960p, 
1080p}. 

4.1.4. Comparison Simulations 

Comparison simulations are conducted among our 
mechanism, joint coding-transmission optimization 
(TOSO) [29], and joint rate control and buffer 
management (JRCBM) [16], under different numbers of 
requests, and the results are analyzed in terms of video 
relative quality and video lag degree. 

4.1.5. Data Table for Simulation Parameters 

To provide a clear overview of the simulation setup, 
Table 1 summarizes the key parameters used in the 
experiments. 

Parameter Value 

Number of Videos 1000 (with 25 new videos uploaded every 1 second) 

Blocks per Video 10 blocks (each block has a playing time of 2 seconds) 

CPU Computing Power 400 cores (5 seconds per bitrate encoding, 80 missions per second) 

Encoding Bitrates {180p, 240p, 360p, 480p, 540p, 720p, 960p, 1080p} 

Default Encoding Bitrates 360p and 720p 

Edge Cache Capacity 400 videos at 180p, 200 videos at 360p, etc. 

Transmission Latency Edge to User: 5 ms, Cloud to Edge: 200 ms 

Network Bandwidth 400 video blocks (480p) or 200 video blocks (960p) per second 

Video Request Distribution Zipf distribution (parameter 1.07) with random bitrate selection 

Table 1. Summary of Simulation Parameters. 

4.2. Results Analysis 

4.2.1. Video Relative Quality 

The comparison simulations on video relative quality 
under different numbers of requests are shown in 
Figure 4. 

Our algorithm is always the best under different 
numbers of requests because, when the basic bitrates do 
not 

match the user request, the coding task can be 
customized to ensure the relative quality of the video. 

https://onlinelibrary.wiley.com/doi/full/10.1155/2021/6258200#bib-0029
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Figure 4. Comparison on video lag degree under different numbers of requests. 

4.2.3. Video Response Time 

As can be seen from Figure 8, the proposed TORE has 
a good performance in response time. The intelligent 

caching method is implemented according to the 
regional popularity characteristics in the EC platform, 
which is 

combined with video forwarding to minimize the 
network transmission redundancy and maximize the 
video 

transmission efficiency. The proposed scheme is of 
significant value for optimizing the video response time, 

which can improve the network transmission efficiency 
and user QoE[17]. 

Comparison simulations on the video lag degree under 
different request numbers are shown in Figure 5, and the 

proposed TORE is always the best under different 
numbers of requests. We can explain the advantages of 
the 

proposed approach in two aspects. On one hand, the EC-
based intelligent caching strategy adaptively allocates 

arithmetic power and tasks to edge-side nodes, which 
will decrease the transmission latency of the requests. 
On 

the other hand, the popularity-based edge intelligent 
caching reduces the redundant transmission of the 
network. 

As a result, the path will not be jammed to ensure the 
stability of the huge network video transmission. 

https://onlinelibrary.wiley.com/doi/full/10.1155/2021/6258200#fig-0008
https://onlinelibrary.wiley.com/doi/full/10.1155/2021/6258200#fig-0007
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Figure 5. Comparison on video lag degree under different numbers of requests. 

4.2.3. Video Response Time 

As can be seen from Figure 6, the proposed TORE has 
a good performance in response time. The intelligent 
caching method is implemented according to the 
regional popularity characteristics in the EC platform, 

which is combined with video forwarding to minimize 
the network transmission redundancy and maximize the 
video transmission efficiency. The proposed scheme is 
of significant value for optimizing the video response 
time, which can improve the network transmission 
efficiency and user QoE. 

 

https://onlinelibrary.wiley.com/doi/full/10.1155/2021/6258200#fig-0008
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Figure 6. Comparison on video response time under different numbers of requests. 

4.3. Discussion 

The experimental results demonstrate the effectiveness 
of the proposed mechanism in optimizing video relative 
quality, reducing video lag degree, and improving video 
response time. As shown in Figure 6, the proposed 
TORE mechanism consistently outperforms TOSO and 
JRCBM in terms of response time[18-19]. This is 
primarily due to the intelligent caching strategy 
implemented in the edge computing (EC) platform, 
which leverages regional popularity characteristics to 
minimize network transmission redundancy and 
maximize video transmission efficiency. By adaptively 
allocating computing resources and tasks to edge-side 
nodes, the proposed approach significantly reduces 
transmission latency and ensures stable video delivery 
even under high request loads. 

Furthermore, the popularity-based edge caching 
strategy plays a crucial role in reducing redundant 
network transmissions, which not only alleviates 
network congestion but also enhances the overall user 
Quality of Experience (QoE). The results highlight the 
importance of integrating intelligent caching and 
adaptive resource allocation in modern video delivery 
systems, especially in scenarios with dynamic user 
demands and varying network conditions. Future work 
could explore the scalability of the proposed mechanism 
in larger networks and its applicability to real-time 
video streaming applications with stricter latency 
requirements. 

1. CONCLUSION 
In this paper, we propose a dynamic computing power 
allocation mechanism based on intelligent popularity 
prediction for video user distribution. The proposed 
mechanism effectively balances conventional encoding 
demand and dynamic on-demand customized encoding 
requests, enabling the efficient and adaptive allocation 
of limited cloud computing resources. By integrating 
reinforcement learning and edge computing, our method 
optimizes the distribution of computing power among 
servers, ultimately reducing response latency and 
enhancing the Quality of Experience (QoE) for 
users[20]. Through experimental validation, we 
demonstrate that our approach improves the efficiency 
of video transmission while minimizing network 
latency, making it a promising solution for modern 
video content delivery systems.   

A key contribution of our proposed optimization 
mechanism lies in its ability to enhance video quality 
and response time, ensuring a seamless viewing 
experience for users. By leveraging intelligent video 
popularity prediction, we achieve adaptive caching, 
thereby further reducing network congestion and 

computational overhead. However, while our research 
focuses on optimizing computing resource allocation 
and network efficiency, it does not explicitly analyze the 
impact of video compression and decoding on 
transmission performance. Given that these aspects also 
play a crucial role in determining the overall quality and 
efficiency of video delivery, future work could explore 
their integration within our proposed framework.   

Looking ahead, further optimizations could be 
introduced to refine video content delivery. One 
potential avenue involves implementing adaptive bitrate 
encoding techniques to adjust video quality based on 
user engagement levels. For instance, videos deemed 
less relevant to users could be encoded at lower bitrates, 
effectively reducing redundant traffic without 
compromising the overall user experience. By 
incorporating such strategies, future research could 
extend the benefits of our proposed model, achieving 
even greater efficiency in video streaming while 
maintaining high levels of responsiveness and quality. 
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