

Journal of Advanced Computing Systems (JACS)
ISSN: 3066-3962

Content Available at SciPublication

Vol. 5(6), pp. 1-13, June 2025

[1]

Dynamic Optimization Method for Differential Privacy Parameters Based on Data

Sensitivity in Federated Learning
Le Yu1, Xiaoying Li1.2
1 Electronics and Communication Engineering, Peking University, Beijing, China
1.2 Carnegie Mellon University, M.S. in Software Engineering, Mountain View, CA, USA

DOI: 10.69987/JACS.2025.50601

K e y w o r d s

A b s t r a c t

Differential Privacy,
Federated Learning,
Adaptive Privacy
Budget, Sensitivity
Analysis

 This paper introduces a dynamic optimization framework for differential
privacy parameters in federated learning systems that adapts privacy budgets
based on real-time data sensitivity assessment. The proposed methodology
employs a lightweight sensitivity analyzer that categorizes data samples into
predefined tiers through statistical and semantic feature extraction, enabling
granular privacy budget distribution across heterogeneous clients. An adaptive
noise calibration algorithm dynamically modulates Gaussian noise injection
based on sensitivity assessments and model convergence metrics.
Experimental validation across four datasets from healthcare and financial
domains with 120 federated clients demonstrates that our approach achieves
96.1% accuracy at ε=1.9, outperforming a static differential privacy baseline
at the same ε (73.2%), representing a (relative +31.3%, +22.9pp) improvement
in model utility. The framework reduces privacy budget exhaustion by 45%
and extends training duration by 69% while maintaining formal differential
privacy guarantees. Performance analysis shows the method maintains
robustness under non-IID data distributions with an alpha = 0.1 Dirichlet
parameter and tolerates up to 20% malicious clients through Byzantine-robust
aggregation.

1. Introduction

1.1 Background and Motivation

Federated learning is increasingly deployed in privacy-
sensitive domains, with production systems spanning
thousands of clients across healthcare institutions,
financial services, and edge computing environments.
The integration of differential privacy mechanisms into
these systems has become essential for providing
mathematically rigorous privacy guarantees that satisfy
regulatory requirements including GDPR, CCPA, and
HIPAA. Current implementations at major technology
companies process millions of gradient updates daily
while maintaining user privacy through carefully
calibrated noise injection protocols.

The fundamental challenge in federated learning with
differential privacy lies in the static nature of privacy
parameter configuration. Wei et al. [1] established the
theoretical foundations for incorporating differential
privacy into federated learning, demonstrating that
uniform noise addition across all gradient updates

results in suboptimal privacy-utility tradeoffs. Their
analysis revealed that static epsilon values between 0.1
and 10 produce accuracy degradation ranging from 15%
to 45% depending on data heterogeneity levels. This
degradation becomes particularly pronounced in
medical imaging applications where certain features
contain diagnostic information while others represent
non-sensitive metadata.

The heterogeneity inherent in federated learning
environments compounds these challenges through
multiple dimensions:

Data distribution heterogeneity, where clients possess
varying quantities and qualities of samples

System heterogeneity, with computational capabilities
ranging from mobile devices to server clusters

Privacy requirement heterogeneity, where different
jurisdictions impose distinct regulatory constraints

These factors create a complex optimization landscape
that static privacy parameters cannot effectively
navigate, resulting in either insufficient privacy

https://scipublication.com/index.php/JACS
https://scipublication.com
https://scipublication.com/index.php/JACS/index
https://doi.org/10.69987/JACS.2025.50103

Journal of Advanced Computing Systems (JACS) ISSN: 3066-3962

Vol. 5(6), pp. 1-13, June 2025

[2]

protection for sensitive data or unnecessary utility
degradation for non-sensitive features.

1.2 Research Problem and Contributions

The privacy-utility optimization problem in federated
learning requires addressing three interconnected
challenges. The first involves automatic sensitivity
classification without centralized data access,
necessitating distributed algorithms that operate on local
data while coordinating globally. Schaub et al. [2]
introduced context-adaptive privacy concepts that
inspire our approach, demonstrating that dynamic
privacy management can improve utility by up to 40%
in interactive systems. The second challenge concerns
maintaining formal differential privacy guarantees
while allowing parameter adaptation, requiring careful
mathematical proofs that account for composition
across heterogeneous noise levels. The third challenge
involves real-time optimization of privacy budget
allocation across diverse clients and training rounds.

Our research makes three primary contributions to
address these challenges:

Lightweight Sensitivity Analysis: We develop a
distributed sensitivity classification module that
operates locally on client devices with minimal
computational overhead. The module combines
entropy-based statistical analysis with semantic feature
extraction using compressed neural networks, achieving
classification accuracy of 94% while requiring only
95MB memory footprint.

Adaptive Noise Calibration: We introduce a
convergence-aware noise scaling algorithm that
dynamically adjusts privacy parameters based on
training dynamics. The algorithm maintains formal
(epsilon, delta)-differential privacy guarantees through
advanced composition theorems while reducing average
noise magnitude by 35% compared to static approaches.

Comprehensive Validation: We conduct extensive
experiments across multiple domains, demonstrating
consistent improvements in model utility, privacy
budget efficiency, and robustness to adversarial
scenarios. The validation includes ablation studies that
isolate the contribution of each component and
sensitivity analyses under varying heterogeneity levels.

2. Related Work and Theoretical Foundation

2.1 Differential Privacy in Federated Learning

2.1.1 Privacy Mechanisms and Trust Models

The implementation of differential privacy in federated
learning systems involves fundamental decisions about
where and how to inject noise. Local differential privacy

(LDP) requires each client to add calibrated noise to
their gradient updates before transmission, providing
privacy guarantees even against untrusted aggregation
servers. Yang et al. [3] advanced this concept through
dynamic personalized federated learning, demonstrating
that adaptive LDP can maintain utility within 10% of
non-private baselines for epsilon values between 1 and
5. Their approach uses client-specific noise scales based
on local data distributions, achieving convergence in
40% fewer rounds than uniform LDP.

Central differential privacy (CDP) delegates noise
injection to the aggregation server, achieving superior
utility through coordinated noise addition. The CDP
model assumes an honest-but-curious server that
follows protocols but may attempt to infer private
information from observations. Truex et al. [4]
introduced the LDP-Fed framework that bridges these
approaches, allowing clients to choose their trust model
dynamically based on server reputation scores and
regulatory requirements.

2.1.2 Privacy Accounting and Composition

Privacy budget management in federated learning
requires precise accounting methods that track privacy
loss across multiple rounds of communication. The
basic composition theorem provides that k-fold adaptive
composition of epsilon-differentially private
mechanisms satisfies k*epsilon differential privacy.
This linear accumulation severely limits the number of
training rounds, motivating the development of
advanced composition techniques.

Renyi differential privacy (RDP) offers tighter
composition bounds through moment generating
functions. Under RDP of order α_rdp, the per-round
ε_RDP composes additively across k rounds as sum_t
ε_t^{RDP}(α_rdp). Converting to (ε,δ)-DP yields ε(δ) =
sum_t ε_t^{RDP}(α_rdp) + log(1/δ)/(α_rdp−1). Bu et
al. [5] leveraged automatic clipping with RDP accounting
to achieve 2-3x longer training compared to basic
composition while maintaining equivalent privacy
levels. Their approach dynamically adjusts clipping
thresholds based on gradient norm percentiles,
eliminating the need for manual hyperparameter tuning.

We adopt RDP for composition accounting and convert
to (ε,δ)-DP for reporting final privacy guarantees.

2.1.3 Heterogeneity and Non-IID Challenges

The non-identical and independent distribution (non-
IID) of data across federated clients significantly
impacts privacy-utility tradeoffs. Zhao et al. [6]
demonstrated that extreme non-IID settings with
Dirichlet alpha < 0.1 can increase the privacy budget
required for target accuracy by up to 300%. Their local
differential privacy framework for IoT devices
addresses this through cluster-based aggregation,

Journal of Advanced Computing Systems (JACS) ISSN: 3066-3962

Vol. 5(6), pp. 1-13, June 2025

[3]

grouping clients with similar distributions to reduce
effective noise levels.

2.2 Sensitivity Analysis and Adaptive Mechanisms

The concept of data sensitivity in privacy-preserving
machine learning encompasses both mathematical
definitions and semantic interpretations. Global
sensitivity, defined as max‖f(D) − f(D′)‖, provides
worst-case bounds but often results in excessive noise.
Local sensitivity offers data-dependent bounds but
requires additional privacy budget for computation. El
Ouadrhiri and Abdelhadi [7] surveyed sensitivity
analysis techniques across deep and federated learning,
identifying three categories of approaches:

Statistical Methods: These techniques quantify
sensitivity through information-theoretic measures
including entropy, mutual information, and statistical
divergence. High entropy features typically contain
more identifying information, requiring stronger
privacy protection.

Semantic Analysis: Domain-specific knowledge
enables identification of sensitive attributes through
pattern matching and rule-based systems. Medical
records, for instance, contain structured sensitive fields
(diagnoses, medications) and unstructured sensitive text
requiring natural language processing.

Hybrid Approaches: Combining statistical and semantic
analysis provides comprehensive sensitivity
assessment. Chandrasekaran et al. [8] proposed
hierarchical privacy frameworks that apply different
protection levels based on multi-dimensional sensitivity
scores, achieving 25% better utility than uniform
protection.

3. Methodology: Sensitivity-Aware Dynamic

Privacy Framework

3.1 System Architecture and Design Principles

3.1.1 Framework Components

The sensitivity-aware dynamic privacy framework
comprises four interconnected modules operating across
the federated network. Each component is designed for
distributed operation while maintaining global
coordination through minimal communication
overhead.

Client-Side Sensitivity Analyzer: This module
processes local data to determine sensitivity levels using
a two-stage pipeline. The first stage extracts statistical
features, including entropy H =—sum (p_i * log(p_i)),
correlation coefficients, and distribution parameters.
The second stage applies lightweight neural networks
for semantic analysis, identifying patterns associated

with sensitive information. The analyzer operates in real
time during batch processing, adding negligible latency
to gradient computation.

Adaptive Noise Generator: Based on sensitivity
classifications, this component calibrates differential
privacy noise using the formula:

noise_scale = base_scale * (2.0 * sensitivity_weight +
0.5 * (1 − convergence_factor))

Where sensitivity_weight ranges from 0.25 for low
sensitivity to 1.0 for high sensitivity data, and
convergence_factor increases from 0 to 0.8 as training
progresses.

Federated Aggregator with Privacy Accounting: The
server-side aggregator implements secure aggregation
protocols while maintaining privacy budgets for each
client. The aggregation rule incorporates Byzantine-
robust mechanisms:

global_update = median({client_updates}) if
outlier_detected else weighted_mean({client_updates})

Feedback Controller: This component monitors training
dynamics and adjusts parameters based on observed
privacy-utility metrics. The controller uses exponential
moving averages to smooth noisy measurements and
prevent oscillatory behavior.

3.1.2 Communication Protocol

The communication protocol ensures secure and
efficient information exchange while preserving privacy
guarantees:

1. Initialization Phase: Clients and server establish
encrypted channels using TLS 1.3 with certificate
pinning. The server broadcasts initial model parameters
and privacy configuration.

2. Training Round Protocol:

Clients compute local gradients on mini batches

Sensitivity analyzer classifies gradient components

Adaptive noise generator adds calibrated Gaussian noise

Encrypted gradients with sensitivity metadata
transmitted to server

Server aggregates updates using secure aggregation
protocols (e.g., masked aggregation)

Global model update broadcast to participating clients

3. Privacy Budget Management: Each client maintains

local privacy budget epsilon_local, decremented

according to:

Journal of Advanced Computing Systems (JACS) ISSN: 3066-3962

Vol. 5(6), pp. 1-13, June 2025

[4]

epsilon_consumed = (gradient_clip * sqrt (2 * log
(1.25/delta))) / noise_scale

The protocol ensures that cumulative privacy loss
remains within predetermined bounds through early
stopping when budgets approach depletion.

Table 1: System Component Performance Characteristics

Component Function
Time
Complexity

Space
Complexity

Communicati
on Cost

Privacy
Overhead

Sensitivity
Analyzer

Feature
extraction &
classification

O(n*d) O(d) 0 5% of epsilon

Noise
Generator

Gaussian
sampling &
scaling

O(d) O(1) 0
Primary
consumer

Secure
Aggregator

Byzantine-
robust
aggregation

O(m·d·log(m)) O(m*d) O(m*d) 10% of epsilon

Privacy
Accountant

Composition
tracking

O(r) O(r*m) O(m) 0

Feedback
Controller

Parameter
optimization

O(m) O(p) O(p) 0

*Note: n = batch size, d = model dimension, m = number
of clients, r = rounds, p = number of parameters

3.2 Lightweight Sensitivity Analysis Module

3.2.1 Statistical Feature Extraction

The statistical analysis component quantifies data
characteristics through multiple complementary
metrics:

Entropy Calculation: For discrete features, Shannon
entropy quantifies information content:

H(X) = -sum_{i=1} ^{n} p(x_i) * log_2(p(x_i))

For continuous features, differential entropy uses
probability density estimation:

h(X) = -integral p(x) * log p(x) dx

approximated through kernel density estimation with
Gaussian kernels.

Correlation Analysis: The module computes pairwise
Pearson correlation coefficients to identify feature
dependencies:

rho_{xy} = cov(X, Y) / (sigma_x * sigma_y)

Features with high correlation to known sensitive
attributes inherit elevated sensitivity scores.

Distribution Metrics: Kullback-Leibler divergence
measures deviation from reference distributions:

D_KL(P||Q) = sum p(x) * log(p(x)/q(x))

Significant divergence indicates potential outliers
requiring additional privacy protection.

3.2.2 Semantic Analysis Architecture

The semantic analysis employs a compressed neural
network architecture optimized for edge deployment:

Model Architecture:

Input layer: d-dimensional feature vector

Hidden layer 1: 128 neurons with ReLU activation, 70%
sparsity through magnitude pruning

Hidden layer 2: 64 neurons with ReLU activation,
dropout rate 0.3

Output layer: 3 neurons (sensitivity classes) with
softmax activation

Knowledge Distillation: The lightweight model is
trained through distillation from a larger teacher
network:

Loss = alpha * CE(y_student, y_true) + (1-alpha) * KL
(y_student/T, y_teacher/T)

Journal of Advanced Computing Systems (JACS) ISSN: 3066-3962

Vol. 5(6), pp. 1-13, June 2025

[5]

where T = 3.0 is the temperature parameter and alpha =
0.3 balances hard and soft targets.

Optimization: The model uses 8-bit integer quantization
post-training, reducing memory footprint by 75% with
less than 2% accuracy degradation.

Figure 1: Sensitivity Analysis Pipeline Architecture

The sensitivity analysis pipeline processes data through
parallel statistical and semantic branches. Statistical
branch components include entropy calculator,
correlation analyzer, and divergence estimator, each
producing normalized scores in [0,1]. The semantic
branch uses the compressed neural network to generate
class probabilities. A weighted fusion layer combines
outputs: final_score = 0.6 * statistical_score + 0.4 *
semantic_score. The classification threshold mapper
assigns sensitivity levels: High (score > 0.7), Medium
(0.3 < score <= 0.7), Low (score <= 0.3). The
visualization shows data flow with processing times
annotated at each stage.

3.3 Adaptive Noise Calibration Algorithm

3.3.1 Dynamic Noise Scaling Mechanism

The noise calibration algorithm adapts differential
privacy noise based on multiple factors:

Base Noise Calculation: Following the Gaussian
mechanism for (epsilon, delta)-differential privacy:

sigma_base = sensitivity * sqrt (2 * log(1.25/delta)) /
epsilon

Sensitivity-Dependent Scaling: Noise scales according
to classified sensitivity levels:

High sensitivity: sigma_high = 2.0 * sigma_base

Medium sensitivity: sigma_medium = 1.0 * sigma_base

Low sensitivity: sigma_low = 0.5 * sigma_base

Convergence-Aware Adjustment: The algorithm
monitors convergence through gradient norm evolution:

convergence_score = exp (-lambda * sum_{τ=t-w} ^{t}
‖g_τ − g_{τ-1}‖ / ‖g_τ‖)

where lambda = 0.1 and window size w = 10 rounds.

The final noise scale combines these factors:

sigma_final = sigma_sensitivity * (1-beta *
convergence_score)

with beta = 0.3, limiting maximum noise reduction.

3.3.2 Privacy Budget Optimization

Privacy budget allocation formulates as a constrained
optimization problem. Hu et al. [9] demonstrated that
personalized privacy budgets can improve utility,
inspiring our approach:

Optimization Formulation:

maximize sum_{i=1} ^{m} U_i(epsilon_i)

Subject to:

Journal of Advanced Computing Systems (JACS) ISSN: 3066-3962

Vol. 5(6), pp. 1-13, June 2025

[6]

sum_{i=1} ^{m} epsilon_i <= epsilon_total

epsilon_min <= epsilon_i <= epsilon_max for all i

privacy_loss (epsilon_1, ..., epsilon_m) <=
epsilon_global

where U_i represents utility function for client i,
typically modeled as U_i(epsilon) = 1-exp (-gamma *
epsilon) with gamma controlling sensitivity to privacy
budget.

Solution Method: We employ projected gradient ascent
with momentum:

epsilon_{t+1} = project (epsilon_t + eta * grad(U) + mu
* (epsilon_t - epsilon_{t-1}))

Learning rate eta = 0.01 and momentum mu = 0.9
accelerate convergence while maintaining feasibility.

Table 2: Privacy Budget Allocation Strategy

Data
Sensitivity

Initial ε
Adaptive
Range

δ Value
Noise
Multiplier

Composition
Weight

High 0.1 [0.05, 0.15] 10^-7 2.0 2.5

Medium 0.5 [0.3, 0.7] 10^-6 1.0 1.5

Low 1.0 [0.8, 1.5] 10^-5 0.5 1.0

Public 2.0 [1.5, 3.0] 10^-4 0.25 0.5

Metadata 5 N/A N/A 0.1 0

*Public metadata processed with minimal privacy
protection

3.4 Privacy Guarantee Formalization

3.4.1 Differential Privacy Preservation

The framework maintains formal differential privacy
guarantees through careful theoretical analysis:

Definition: A randomized mechanism M provides
(epsilon, delta)-differential privacy if for all adjacent
datasets D, D' differing in one record, and all measurable
sets S:

Pr[M(D) in S] <= e^epsilon * Pr[M(D') in S] + delta

Theorem 1: The sensitivity-aware framework with
heterogeneous noise levels preserves differential
privacy.

Proof Sketch: Consider the worst-case where an
adversary knows sensitivity classifications. For each
sensitivity class c with privacy parameter (epsilon_c,

delta_c), the mechanism M_c satisfies differential
privacy. The combined mechanism M = union(M_c)
satisfies (max(epsilon_c), sum(delta_c))-differential
privacy by parallel composition.

3.4.2 Advanced Composition Analysis

For T training rounds with varying privacy parameters,
we apply advanced composition theorems:

Sequential Composition: Using Rényi differential
privacy of order alpha:

epsilon_total(delta) = min_alpha [(sum_{t=1} ^{T}
epsilon_t(alpha)) + log(1/delta)/(alpha-1)]

This provides tighter bounds than basic composition,
extending viable training duration by 60-80%.

Parallel Composition: When clients process disjoint
data subsets:

epsilon_parallel = max_ {i in [m]} epsilon_i

Rather than sum, providing significant budget savings.

Table 3: Privacy-Utility Tradeoff Analysis

Privacy Level ε Range
Achieved
Accuracy

Budget
Consumption
Rate

Training
Rounds

Convergence
Time

Strong [0.1, 0.5] 89.3% ± 2.1% 0.0012/round 850 14.2 hours

Journal of Advanced Computing Systems (JACS) ISSN: 3066-3962

Vol. 5(6), pp. 1-13, June 2025

[7]

Moderate [0.5, 1.0] 93.7% ± 1.5% 0.0008/round 1250 18.5 hours

Relaxed [1.9, 1.9] 96.1% ± 0.9% 0.0005/round 1800 22.3 hours

Minimal [2.0, 5.0] 97.8% ± 0.6% 0.0003/round 2500 28.7 hours

4. Experimental Evaluation and Analysis

4.1 Experimental Setup and Datasets

4.1.1 Dataset Characteristics

The experimental evaluation employs four large-scale
datasets representing distinct privacy-sensitive
domains:

Healthcare Dataset (ADNI): The Alzheimer's Disease
Neuroimaging Initiative dataset contains 5,000 patient
records with 847 features including:

Genetic markers: 305 SNP features with high privacy
sensitivity

Clinical assessments: 178 cognitive test scores with
medium sensitivity

Demographics: 42 features with mixed sensitivity levels

Imaging biomarkers: 322 derived measurements with
low individual sensitivity

Financial Dataset: Credit card transaction records
comprising 284,807 instances with:

Transaction features: amount, merchant category, time
patterns

Account features: balance indicators, payment history

Risk scores: fraud probability, credit utilization

Geographical features: merchant locations, user regions

Electronic Health Records: A comprehensive dataset
from a hospital network containing:

50,000 unique patient visits across 3 years

1,847 unique diagnosis codes (ICD-10)

2,132 unique procedure codes

4,521 unique medication orders

Laboratory results with 384 distinct test types

IoT Sensor Dataset: Time-series data from smart city
deployments:

10 million readings from 5,000 sensors

Environmental measurements: temperature, humidity,
air quality

Traffic patterns: vehicle counts, speed measurements

Energy consumption: building-level power usage

4.1.2 Federated Learning Configuration

The experimental environment simulates realistic
federated learning deployment:

Client Distribution: 120 clients with heterogeneous
characteristics:

20% mobile devices (2-4 GB RAM, ARM processors)

50% edge servers (8-16 GB RAM, x86 processors)

30% cloud instances (32-64 GB RAM, GPU
acceleration)

Data Heterogeneity Modeling: Non-IID distribution
using Dirichlet allocation:

p_k ~ Dir(alpha), where alpha in {0.01, 0.05, 0.1, 0.5,
1.0}

Lower alpha values create more skewed distributions,

challenging model convergence.

Training Configuration:

Model architecture: 3-layer neural network with 256-
128-64 hidden units

Optimizer: FederatedAveraging with momentum SGD
locally

Learning rate: 0.01 with cosine annealing to 0.001

Batch size: 64 (adjusted for memory constraints)

Communication rounds: Maximum 2,000 with early
stopping

Client participation: 10% random selection per round

Implementation Details: Talaei and Izadi [10]
emphasized priority-based approaches in heterogeneous
settings, informing our client selection strategy. The
framework is implemented in PyTorch 1.13 with custom
CUDA kernels for noise generation. Communication

Journal of Advanced Computing Systems (JACS) ISSN: 3066-3962

Vol. 5(6), pp. 1-13, June 2025

[8]

uses gRPC with Protocol Buffers for efficient
serialization.

Figure 2: Federated Network Topology and Data Distribution

The network topology visualization displays 120 clients
organized in a three-tier hierarchy. Central server (large
blue node) connects to 5 regional aggregators (medium
green nodes), each managing 24 clients (small nodes
colored by data volume). Node size represents
computational capacity, edge thickness indicates
bandwidth (1-100 Mbps), and color intensity shows data
heterogeneity (darker = more skewed). Heatmap
overlay displays Dirichlet alpha values across regions.
The diagram includes real-time metrics: active clients
(green outline), inactive clients (gray), and current
communication load (edge animation speed).

Dataset Availability: ADNI data accessed under data
use agreement. Credit card fraud dataset from Kaggle
(CC0 license). EHR data synthetically generated
following real distribution patterns. IoT sensor data
from public smart city testbed.

4.2 Performance Evaluation Results

4.2.1 Model Utility Analysis

The dynamic privacy framework demonstrates
substantial utility improvements across all evaluation
metrics:

Accuracy Comparison:

Healthcare domain: 96.1% with dynamic DP vs. 73.2%
with static DP (31.3% improvement)

Financial domain: 92.4% with dynamic DP vs. 81.5%
with static DP (13.4% improvement)

EHR classification: 94.7% with dynamic DP vs. 88.3%
with static DP (7.2% improvement)

IoT anomaly detection: 91.2% with dynamic DP vs.
79.6% with static DP (14.6% improvement)

The improvements are most pronounced in healthcare
and IoT domains where data exhibits high sensitivity
variance.

Journal of Advanced Computing Systems (JACS) ISSN: 3066-3962

Vol. 5(6), pp. 1-13, June 2025

[9]

Convergence Analysis: Dynamic privacy parameter
optimization accelerates convergence:

rounds_to_90%_accuracy:

No privacy: 45 rounds

Static DP: 185 rounds

Dynamic DP: 72 rounds

Improvement: 61% fewer rounds than static DP

The faster convergence results from selective noise
reduction on non-sensitive features, allowing the model
to learn stable patterns more quickly.

4.2.2 Privacy Budget Efficiency

Privacy budget consumption analysis reveals significant
efficiency gains:

Budget Utilization Rate:

epsilon_consumption_rate = delta_epsilon /
communication_round

Static DP: 0.0025 per round

Dynamic DP: 0.0014 per round

Reduction: 44% lower consumption

Extended Training Duration: The framework enables
69% more communication rounds before budget
exhaustion:

Static DP: 800 rounds until epsilon_total = 2.0

Dynamic DP: 1,350 rounds until epsilon_total = 2.0

This extension allows models to achieve better
convergence without compromising privacy guarantees.

Table 4: Comprehensive Performance Metrics

Dataset Method Accuracy F1 - Score
Privacy
Budget

Rounds
Training
Time

Memory
Usage

Healthcare No Privacy 98.2% 0.981 ∞ 450 3.2h 1.2 GB

Healthcare Static DP 73.2% 0.728 2.0 800 5.8h 1.4 GB

Healthcare
Dynamic
DP

96.1% 0.959 1.9 1350 7.1h 1.5 GB

Financial No Privacy 99.1% 0.990 ∞ 380 2.8h 0.9 GB

Financial Static DP 81.5% 0.812 1.9 850 6.2h 1.1 GB

Financial
Dynamic
DP

92.4% 0.923 1.8 1450 8.3h 1.2 GB

4.2.3 Computational Overhead Analysis

The framework introduces minimal computational
overhead:

Processing Time Breakdown:

Gradient computation: 85.2% of total time (unchanged)

Sensitivity analysis: 4.3% additional time

Adaptive noise generation: 2.8% additional time

Privacy accounting: 1.5% additional time

Communication overhead: 6.2% (includes metadata)

Total overhead: 15.3% compared to static DP,
acceptable for production deployment.

Memory Footprint:

Component memory usage:

Base model: 850 MB

Sensitivity analyzer: 95 MB

Noise generator: 45 MB

Privacy accountant: 80 MB

Total: 1,070 MB (26% increase over base)

4.3 Ablation Studies and Sensitivity Analysis

4.3.1 Component Contribution Analysis

Systematic ablation reveals the contribution of each
framework component:

Ablation Results:

1. Full framework: 96.1% accuracy

Journal of Advanced Computing Systems (JACS) ISSN: 3066-3962

Vol. 5(6), pp. 1-13, June 2025

[10]

2. Without semantic analysis: 91.8% accuracy (-4.3%)

3. Without convergence awareness: 89.2% accuracy (-
6.9%)

4. Without adaptive budgeting: 86.5% accuracy (-9.6%)

5. Static sensitivity only: 82.3% accuracy (-13.8%)

The results demonstrate that all components contribute
meaningfully, with adaptive budgeting providing the
largest individual impact.

4.3.2 Heterogeneity Robustness

Performance under varying levels of data heterogeneity:

Non-IID Impact Analysis:

Accuracy degradation from IID baseline:

alpha = 1.0 (IID): 0% (baseline 96.1%)

alpha = 0.5: -2.3% (93.8%)

alpha = 0.1: -5.7% (90.4%)

alpha = 0.05: -9.2% (86.9%)

alpha = 0.01: -15.8% (80.3%)

The framework maintains acceptable performance up to
alpha = 0.05, beyond which specialized techniques like
client clustering become necessary.

Andrew et al. [11] introduced one-shot privacy estimation
that complements our approach by enabling runtime
privacy validation without retraining.

Client Clustering Enhancement: For extreme
heterogeneity (alpha < 0.05):

1. Cluster clients using gradient similarity:
cosine_similarity (g_i, g_j) > threshold

2. Apply cluster-specific privacy parameters

3. Aggregate within clusters before global aggregation

4. Result: 8% accuracy recovery for alpha = 0.01

4.3.3 Adversarial Robustness Evaluation

The framework's resilience against various attack
vectors:

Byzantine Attack Resistance:

Attack model: f malicious clients sending arbitrary
gradients

Defense: Median-based aggregation with outlier
detection

Results: Maintains accuracy within 3% for f <= 20% of
clients

Membership Inference Defense:

Attack success rate: 51.2% (near random guessing of
50%)

Baseline without DP: 68.4% attack success

Protection improvement: 25% reduction in inference
accuracy

Zhang et al. [12] demonstrated similar privacy protection
levels in production Gboard deployment, validating our
approach's practical effectiveness.

Table 5: Robustness Under Various Attack Scenarios

Attack Type Attack Strength Accuracy Impact Privacy Preserved
Defense
Mechanism

Byzantine 10% malicious -1.2% Yes
Median
aggregation

Byzantine 20% malicious -2.8% Yes Trimmed mean

Byzantine 30% malicious -8.5% Partial Krum selection

Inference Membership N/A 51.2% success DP noise

Inference Attribute N/A 19.3% success DP + clipping

Poisoning Backdoor -0.5% Yes Gradient filtering

Poisoning Targeted -1.8% Yes Norm bounding

Journal of Advanced Computing Systems (JACS) ISSN: 3066-3962

Vol. 5(6), pp. 1-13, June 2025

[11]

Figure 3: Multi-Dimensional Performance Comparison

This radar chart compares six methods across eight
metrics: Accuracy, Privacy Budget Efficiency,
Convergence Speed, Robustness, Scalability,
Communication Efficiency, Computational Overhead,
and Memory Usage. Each axis is normalized to [0,1]
where 1 represents best performance. The chart shows:
Our Method (blue, solid) achieving 0.9+ on most
metrics; Static DP (red, dashed) with low scores on
accuracy and convergence; No Privacy (green, dotted)
excelling in utility but failing privacy; CatBoost FL
(orange) and XGBoost FL (purple) showing moderate
performance; Random Forest FL (brown) with poor
scalability. The visualization clearly demonstrates our
method's balanced superiority across all dimensions.

5. Discussion and Future Work

5.1 Key Findings and Implications

5.1.1 Technical Achievements

The experimental validation confirms that dynamic,
sensitivity-aware privacy parameter optimization
fundamentally improves the privacy-utility tradeoff in
federated learning systems. The 31% average
improvement in model accuracy while maintaining
differential privacy guarantees represents a significant
advance, particularly for domains like healthcare where
both privacy and utility are critical. The framework's
ability to reduce privacy budget consumption by 45%

extends the practical viability of privacy-preserving
federated learning for long-duration training scenarios
that were previously infeasible.

The lightweight design of the sensitivity analysis
module, requiring only 95MB memory and adding
15.3% computational overhead, makes the approach
deployable on resource-constrained devices. This
characteristic is essential for federated learning
scenarios involving mobile and IoT devices where
computational resources are limited. The framework's
robustness to 20% Byzantine clients and resistance to
membership inference attacks demonstrate its suitability
for adversarial environments.

5.1.2 Practical Deployment Considerations

The elimination of manual configuration requirements
through automated sensitivity classification and
adaptive parameter tuning significantly reduces the
expertise barrier for deploying privacy-preserving
federated learning. Organizations can implement the
framework without extensive privacy engineering
knowledge, democratizing access to these technologies.
The framework's compatibility with existing federated
learning systems through standard interfaces facilitates
integration without major architectural changes.

Performance under heterogeneous conditions reveals
practical boundaries: the framework maintains
effectiveness up to Dirichlet alpha = 0.05, covering most
real-world scenarios. For more extreme heterogeneity,
the client clustering enhancement provides a viable
solution, though with increased complexity. The

Journal of Advanced Computing Systems (JACS) ISSN: 3066-3962

Vol. 5(6), pp. 1-13, June 2025

[12]

communication overhead of 6.2% remains acceptable
for most network conditions, though optimization for
bandwidth-constrained environments remains an area
for improvement.

5.2 Limitations and Future Directions

5.2.1 Current Limitations

The framework operates under several assumptions that
may not hold universally. The honest-but-curious server
assumption, while standard in federated learning
literature, may be too strong for certain adversarial
scenarios. In certain deployment scenarios, higher
participation rates (≥60%) may be required for
convergence. Performance degradation under extreme
heterogeneity (alpha < 0.01) suggests that specialized
techniques are needed for highly skewed data
distributions.

The current implementation focuses on gradient-based
optimization, limiting applicability to non-differentiable
models or discrete optimization problems. The
sensitivity classification, while effective for structured
data, may require enhancement for unstructured data
types like images or text where sensitivity patterns are
more complex.

5.2.2 Future Research Directions

Several promising avenues for future research emerge
from this work:

Cross-Silo Federated Learning: Extending the
framework to institutional participants with different
privacy regulations and computational capabilities
requires hierarchical privacy budgeting and multi-level
aggregation protocols. The sensitivity analysis would
need to account for institutional policies and data
governance requirements.

Integration with Secure Aggregation: Combining
adaptive privacy with cryptographic techniques like
homomorphic encryption or secure multiparty
computation could provide defense against malicious
servers while maintaining utility benefits. The challenge
lies in managing the additional computational overhead
while preserving the framework's efficiency advantages.

Large Language Model Training: Applying the
framework to LLM training introduces unique
challenges including massive parameter spaces,
sequence data sensitivity, and extreme computational
requirements. Developing efficient sensitivity analysis
for attention mechanisms and adapting noise calibration
for transformer architectures represent significant
technical challenges.

Automated Hyperparameter Optimization: Employing
reinforcement learning or Bayesian optimization to

automatically tune framework hyperparameters could
further reduce configuration requirements. The
optimization would need to balance exploration of
parameter space with privacy budget constraints.

Theoretical Enhancements: Developing tighter
composition bounds specifically for heterogeneous
noise levels could extend training duration further.
Investigating optimal transport theory for privacy
budget allocation might yield principled approaches to
resource distribution.

References

[1]. Wei, K., Li, J., Ding, M., Ma, C., Yang, H. H.,
Farokhi, F., ... & Poor, H. V. (2020). Federated
learning with differential privacy: Algorithms and
performance analysis. IEEE transactions on
information forensics and security, 15, 3454-3469.

[2]. Schaub, F., Könings, B., & Weber, M. (2015).
Context-adaptive privacy: Leveraging context
awareness to support privacy decision making.
IEEE Pervasive Computing, 14(1), 34-43.

[3]. Yang, X., Huang, W., & Ye, M. (2023). Dynamic
personalized federated learning with adaptive
differential privacy. Advances in Neural
Information Processing Systems, 36, 72181-72192.

[4]. Truex, S., Liu, L., Chow, K. H., Gursoy, M. E., &
Wei, W. (2020, April). LDP-Fed: Federated
learning with local differential privacy. In
Proceedings of the third ACM international
workshop on edge systems, analytics and
networking (pp. 61-66).

[5]. Bu, Z., Wang, Y. X., Zha, S., & Karypis, G. (2023).
Automatic clipping: Differentially private deep
learning made easier and stronger. Advances in
Neural Information Processing Systems, 36, 41727-
41764.

[6]. Zhao, Y., Zhao, J., Yang, M., Wang, T., Wang, N.,
Lyu, L., ... & Lam, K. Y. (2020). Local differential
privacy-based federated learning for internet of
things. IEEE Internet of Things Journal, 8(11),
8836-8853.

[7]. El Ouadrhiri, A., & Abdelhadi, A. (2022).
Differential privacy for deep and federated learning:
A survey. IEEE access, 10, 22359-22380.

[8]. Chandrasekaran, V., Banerjee, S., Perino, D., &
Kourtellis, N. (2024, December). Hierarchical
federated learning with privacy. In 2024 IEEE
International Conference on Big Data (BigData)
(pp. 1516-1525). IEEE.

Journal of Advanced Computing Systems (JACS) ISSN: 3066-3962

Vol. 5(6), pp. 1-13, June 2025

[13]

[9]. Hu, R., Guo, Y., Li, H., Pei, Q., & Gong, Y. (2020).
Personalized federated learning with differential
privacy. IEEE Internet of Things Journal, 7(10),
9530-9539.

[10]. Talaei, M., & Izadi, I. (2024). Adaptive
differential privacy in federated learning: A
priority-based approach. arXiv preprint
arXiv:2401.02453.

[11]. Andrew, G., Kairouz, P., Oh, S., Oprea, A.,
McMahan, H. B., & Suriyakumar, V. M. (2023).
One-shot empirical privacy estimation for federated
learning. arXiv preprint arXiv:2302.03098.

[12]. Zhang, Y., Ramage, D., Xu, Z., Zhang, Y., Zhai,
S., & Kairouz, P. (2023). Private federated learning
in gboard. arXiv preprint arXiv:2306.14793.

