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 Visual Simultaneous Localization and Mapping (SLAM) systems face 
significant challenges in loop closure detection, particularly in dynamic 
environments with varying illumination and viewpoint changes. Traditional 
methods relying on handcrafted features and bag-of-words models demonstrate 
limited robustness and computational efficiency. This research proposes a 
novel lightweight neural network architecture incorporating attention 
mechanisms to enhance loop closure detection performance while maintaining 
real-time computational requirements. The proposed method integrates an 
efficient channel attention module within a compressed MobileNetV2 
backbone, enabling accurate feature extraction with reduced computational 
overhead. Experimental validation on standard datasets including TUM RGB-
D, KITTI, and New College demonstrates superior performance compared to 
conventional approaches. The lightweight design achieves a 30.8% 
improvement in computational efficiency while maintaining comparable 
accuracy metrics. The attention mechanism effectively focuses on 
discriminative features, improving robustness to environmental variations. 
Results indicate that the proposed approach successfully addresses the trade-
off between computational complexity and detection accuracy, making it 
suitable for resource-constrained robotic applications. The method 
demonstrates enhanced generalization capabilities across diverse indoor and 
outdoor scenarios, contributing to more reliable autonomous navigation 
systems. 

1. Introduction 

1.1. Importance and Challenges of Loop Closure 

Detection in Visual SLAM 

Visual Simultaneous Localization and Mapping 
represent a fundamental technology enabling 
autonomous robots to navigate unknown environments 
while constructing accurate spatial representations. 
Loop closure detection constitutes a critical component 
within SLAM frameworks, serving to identify 
previously visited locations and minimizing 
accumulated drift errors inherent in sequential pose 
estimationError! Reference source not found.. The 
accurate recognition of revisited places enables global 
map consistency and trajectory optimization through 
pose graph constraints. 

Contemporary robotic applications demand real-time 
performance capabilities while operating under 
computational resource limitations. Mobile robots 
deployed in dynamic environments encounter various 
challenges including illumination variations, seasonal 
changes, occlusion by moving objects, and viewpoint 
differencesError! Reference source not found.. These 
environmental factors significantly impact the 
reliability of loop closure detection algorithms, 
potentially leading to false positive or negative 
detections that compromise overall system 
performance. 

Traditional visual SLAM systems struggle to maintain 
consistent performance across diverse operating 
conditionsError! Reference source not found.. 
Cumulative positioning errors accumulate over 
extended operational periods, degrading localization 
accuracy and map quality. Effective loop closure 
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detection mechanisms provide essential constraints for 
backend optimization, enabling drift correction and 
ensuring global map consistencyError! Reference 
source not found.. The increasing deployment of 
autonomous systems in complex real-world scenarios 
necessitates robust and efficient loop closure detection 
methodologiesError! Reference source not found.. 

1.2. Limitations Analysis of Traditional Loop 

Closure Detection Methods 

Conventional loop closure detection approaches 
predominantly rely on handcrafted feature descriptors 
and bag-of-words representations for place 
recognitionError! Reference source not found.. These 
methods typically employ feature extraction techniques 
such as SIFT, SURF, or ORB to identify distinctive 
visual landmarks within captured images. The extracted 
features undergo vocabulary-based quantization 
processes, generating compact representations suitable 
for similarity computation and matching operations. 

Bag-of-words models demonstrate inherent limitations 
in handling environmental variations and appearance 
changesError! Reference source not found.. The 
predetermined vocabulary structures lack adaptability to 
novel visual patterns, resulting in degraded performance 
when encountering previously unseen 
environmentsError! Reference source not found.. 
Additionally, handcrafted features exhibit sensitivity to 
illumination changes, scale variations, and viewpoint 
transformations, limiting their effectiveness in 
challenging operational scenariosError! Reference 
source not found.. 

Computational complexity represents another 
significant constraint of traditional 
methodologiesError! Reference source not found.. 
Vocabulary construction and maintenance require 
substantial memory resources, while similar 
computation scales poorly with vocabulary sizeError! 
Reference source not found.. Real-time operation 
becomes increasingly challenging as the number of 
stored keyframes grows, particularly in long-term 
autonomous missionsError! Reference source not 
found.. These limitations motivate the development of 
more efficient and robust alternatives leveraging 
advances in deep learning technologiesError! 
Reference source not found.. 

1.3. Main Contributions and Innovations of This 

Work 

This research introduces a comprehensive framework 
addressing the computational and accuracy challenges 
associated with visual SLAM loop closure detection. 
The primary contribution involves designing a 
lightweight neural network architecture that maintains 

detection accuracy while significantly reducing 
computational requirements compared to existing deep 
learning approachesError! Reference source not 
found.. 

The proposed methodology integrates an efficient 
channel attention mechanism within a compressed 
MobileNetV2 backbone networkError! Reference 
source not found.. This design choice enables selective 
feature enhancement while preserving computational 
efficiency through depthwise separable convolutions 
and linear bottleneck structuresError! Reference 
source not found.. The attention module focuses 
computational resources on discriminative image 
regions, improving feature representation quality 
without proportional increases in computational 
overheadError! Reference source not found.. 

A novel feature extraction and similarity computation 
strategy accommodates real-time processing 
requirements while maintaining robust performance 
across diverse environmental conditionsError! 
Reference source not found.. The approach eliminates 
dependency on predetermined vocabularies, enabling 
adaptive feature learning and improved generalization 
capabilitiesError! Reference source not found.. 
Comprehensive experimental validation demonstrates 
superior performance compared to traditional methods 
across multiple standard datasets, establishing the 
practical viability of the proposed approach for real-
world robotic applicationsError! Reference source not 
found.. 

2. Related Work 

2.1. Survey of Traditional Feature-based Loop 

Closure Detection Methods 

Early loop closure detection methodologies established 
foundations based on local feature extraction and 
matching principles. SIFT descriptors provided scale 
and rotation invariance properties, enabling reliable 
features matching across different viewpoints and 
scalesError! Reference source not found.. SURF 
algorithms improved computational efficiency while 
maintaining comparable matching performance, making 
real-time applications more feasible for resource-
constrained systems. 

ORB features gained widespread adoption in visual 
SLAM systems due to their computational efficiency 
and binary descriptor propertiesError! Reference 
source not found.. FAB-MAP probabilistic 
frameworks enhanced place recognition capabilities by 
incorporating appearance-based similarity measures 
with statistical inference mechanisms Error! 
Reference source not found.. These approaches 
demonstrated effectiveness in structured environments 
but encountered difficulties when dealing with dynamic 
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scenes and significant appearance variationsError! 
Reference source not found.. 

Bag-of-words models transformed local feature 
descriptors into compact global representations suitable 
for efficient similarity computationError! Reference 
source not found.. DBoW2 and DBoW3 
implementations provided optimized vocabulary 
structures and inverted index mechanisms, enabling fast 
retrieval operations in large-scale environmentsError! 
Reference source not found.. Visual vocabulary 
construction techniques evolved to improve 
discriminative power while reducing memory 
requirements, though fundamental limitations regarding 
adaptability to novel environments persistedError! 
Reference source not found.. 

2.2. Current Applications of Deep Learning in Loop 

Closure Detection 

Convolutional neural networks introduced paradigm 
shifts in visual place recognition by learning 
hierarchical feature representations directly from raw 
image data. Pre-trained CNN models demonstrated 
superior performance compared to handcrafted features, 
exhibiting improved robustness to illumination 
variations and viewpoint changesError! Reference 
source not found.. AlexNet and VGG architectures 
provided initial foundations for deep feature extraction 
in loop closure detection applications. 

Autoencoder-based approaches explored unsupervised 
learning methodologies for feature representation 
learningError! Reference source not found.. Stacked 
denoising autoencoders enabled compressed image 
representations while preserving discriminative 
information essential for place recognition tasksError! 
Reference source not found.. Variational autoencoders 
incorporated probabilistic modeling frameworks, 
providing uncertainty estimates and improved 
generalization capabilities across diverse environmental 
conditionsError! Reference source not found.. 

Siamese network architectures specialized in similarity 
learning for loop closure detection tasksError! 
Reference source not found.. These networks learned 
to map similar images to nearby points in feature space 
while separating dissimilar images, directly optimizing 
for place recognition objectivesError! Reference 
source not found.. NetVLAD architectures combined 
convolutional features with vector aggregation 
mechanisms, achieving state-of-the-art performance in 
large-scale place recognition benchmarks while 
maintaining computational tractability for real-time 
applicationsError! Reference source not found.. 

2.3. Development of Attention Mechanisms in 

Computer Vision 

Attention mechanisms emerged as powerful tools for 
enhancing feature representation quality in computer 
vision applications. Channel attention modules, 
including Squeeze-and-Excitation (SE) networks, 
enabled adaptive feature recalibration by learning 
channel-wise importance weightsError! Reference 
source not found.. These mechanisms improved model 
performance while introducing minimal computational 
overhead, making them suitable for resource-
constrained applications. 

Efficient Channel Attention (ECA) modules refined 
attention mechanism designs by reducing parameter 
requirements while maintaining performance 
improvementsError! Reference source not found.. 
ECA architectures eliminated fully connected layers in 
favor of one-dimensional convolutions, significantly 
reducing computational complexity while preserving 
attention effectivenessError! Reference source not 
found.. This design philosophy aligned well with 
mobile and embedded system requirements where 
computational resources remain limitedError! 
Reference source not found.. 

Self-attention mechanisms extended attention concepts 
to spatial dimensions, enabling models to focus on 
relevant image regions for specific tasksError! 
Reference source not found.. Transformer 
architectures demonstrated remarkable success in 
various computer vision applications, though 
computational requirements often exceeded mobile 
system capabilitiesError! Reference source not 
found.. Recent developments in efficient attention 
mechanisms aimed to capture spatial and channel-wise 
dependencies while maintaining computational 
feasibility for real-time applicationsError! Reference 
source not found.. 

3. Methodology 

3.1. Lightweight Neural Network Architecture 

Design 

3.1.1. MobileNetV2 Backbone Integration 

The proposed architecture builds upon MobileNetV2 
foundations, leveraging depthwise separable 
convolutions to achieve substantial parameter reduction 
while maintaining feature extraction capabilities. The 
backbone network employs inverted residual structures 
with linear bottlenecks, enabling efficient information 
flow through reduced-dimension feature mapsError! 
Reference source not found. This design choice 
addresses computational constraints prevalent in mobile 
robotics applications while preserving essential visual 
information for loop closure detection. 
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Depthwise separable convolutions decompose standard 
convolution operations into depthwise and pointwise 
components, reducing computational complexity from 
O(D_K × D_K × M × N) to O(D_K × D_K × M + M × 
N), where D_K represents kernel size, M denotes input 
channels, and N indicates output channels. This 
factorization achieves significant computational savings 
while maintaining representational capacity sufficient 
for visual place recognition tasks. 

The inverted residual design incorporates expansion 
layers that increase channel dimensions before applying 

depthwise convolutions, followed by projection layers 
that compress features back to lower dimensions. Linear 
activation functions in projection layers prevent 
information loss in low-dimensional spaces, preserving 
feature quality essential for discriminative place 
recognition. Residual connections enable gradient flow 
optimization during training while facilitating feature 
reuse across network layers. 

 

 

Table 1: MobileNetV2 Architecture Configuration 

Layer Input Size Operator Expansion Output Channels Stride 

1 224×224×3 Conv2d - 32 2 

2 112×112×32 Bottleneck 1 16 1 

3 112×112×16 Bottleneck 6 24 2 

4 56×56×24 Bottleneck 6 32 2 

5 28×28×32 Bottleneck 6 64 2 

6 14×14×64 Bottleneck 6 96 1 

7 14×14×96 Bottleneck 6 160 2 

3.1.2. Network Compression Strategies 

Network pruning techniques eliminate redundant 
parameters while preserving essential feature extraction 
capabilities. Structured pruning removes entire channels 
based on importance scores computed through gradient-
based sensitivity analysis. Channel importance 
evaluation considers both magnitude-based criteria and 
gradient information to identify channels contributing 
minimally to overall network performanceError! 
Reference source not found.. 

Quantization methods reduce parameter precision from 
32-bit floating-point to 8-bit integer representations, 
achieving additional memory and computational 
savings. Post-training quantization maintains model 
accuracy while reducing memory footprint by 

approximately 75%. Dynamic range calibration ensures 
optimal quantization parameters for each layer, 
minimizing accuracy degradation associated with 
reduced precision arithmetic operations. 

Knowledge distillation transfers learned representations 
from larger teacher networks to compact student 
architecturesError! Reference source not found.. The 
compression process preserves discriminative features 
essential for loop closure detection while significantly 
reducing computational requirementsError! Reference 
source not found.. Temperature scaling in softmax 
operations enables effective knowledge transfer by 
smoothing probability distributions and emphasizing 
relative feature importance relationshipsError! 
Reference source not found.. 

Table 2: Compression Results Analysis 
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Method Parameters (M) FLOPs (G) Memory (MB) Accuracy Loss (%) 

Original 3.47 0.585 13.2 0.0 

Pruning 2.41 0.412 9.1 1.2 

Quantization 3.47 0.585 3.3 0.8 

Combined 2.41 0.412 2.3 1.8 

3.2. Integration and Optimization of Attention 

Mechanisms 

3.2.1. Efficient Channel Attention Module Design 

The Efficient Channel Attention (ECA) module 
enhances feature representation quality through 
adaptive channel recalibration mechanisms. Unlike 
Squeeze-and-Excitation networks requiring fully 
connected layers, ECA employs one-dimensional 
convolutions for channel attention computation, 
reducing parameter overhead while maintaining 
attention effectivenessError! Reference source not 
found.. The module generates channel weights through 
global average pooling followed by one-dimensional 
convolution operations with adaptive kernel sizes. 

Channel attention weights capture inter-channel 
dependencies and feature importance relationships. The 

adaptive kernel size selection mechanism considers 
channel dimensionality to determine optimal receptive 
field sizes for attention computation. Kernel size 
calculation follows k = |log_2(C)/γ + b/γ|_odd, where C 
represents channel number, γ denotes reduction factor, 
and b indicates bias term. This formulation ensures 
appropriate attention receptive fields across different 
feature map dimensions. 

The ECA module integration strategy places attention 
mechanisms after specific bottleneck blocks to 
maximize feature enhancement while minimizing 
computational overhead. Attention placement analysis 
reveals optimal insertion points that balance 
performance improvements with computational 
efficiency requirements. Strategic positioning enables 
selective feature refinement without disrupting 
information flow through the backbone network 
architecture. 

Figure 1: ECA Module Integration Architecture 
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The figure illustrates the comprehensive ECA module 
integration within the MobileNetV2 backbone. The 
visualization displays the network architecture with 
attention modules positioned after key bottleneck 
blocks. Feature maps flow through depthwise separable 
convolutions, followed by ECA modules that generate 
channel attention weights. Global average pooling 
operations compress spatial dimensions, while one-
dimensional convolutions compute attention weights. 
The diagram includes detailed dimension annotations 
for feature maps at each stage, showing the information 
flow from input images through multiple bottleneck 
blocks with integrated attention mechanisms. Color 
coding differentiates between standard convolution 
operations (blue), depthwise convolutions (green), 
attention modules (red), and residual connections 
(yellow). The architecture demonstrates how attention 
mechanisms enhance feature representation while 
maintaining computational efficiency essential for real-
time applications. 

3.2.2. Attention Weight Optimization 

Attention weight optimization employs gradient-based 
training procedures to learn optimal channel importance 
distributions. The training process incorporates 
contrastive learning objectives that encourage similar 

places to generate similar attention patterns while 
promoting discriminative attention for different 
locationsError! Reference source not found.. This 
approach enhances the model's ability to focus on 
relevant visual features for place recognition tasks. 

Loss function design combines cross-entropy 
classification objectives with attention regularization 
terms Error! Reference source not found.. The 
regularization component prevents attention collapse 
and encourages diverse attention patterns across 
different channel groupsError! Reference source not 
found.. Attention diversity metrics quantify the 
distribution of attention weights, ensuring balanced 
feature utilization across the network 
architectureError! Reference source not found.. 

Temperature annealing schedules gradually adjust 
attention sharpness during training, enabling smooth 
transition from exploratory to focused attention 
patternsError! Reference source not found.. Initial 
high-temperature settings promote attention 
exploration, while progressive cooling concentrates 
attention on the most discriminative features Error! 
Reference source not found.. This training strategy 
improves convergence stability and final model 
performanceError! Reference source not found.. 

Table 3: Attention Optimization Parameters 

Parameter Initial Value Final Value Schedule Type Update Frequency 
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Temperature 10.0 1.0 Exponential Every Epoch 

Learning Rate 0.001 0.0001 Cosine Every Step 

Attention Weight Decay 0.01 0.001 Linear Every Epoch 

Regularization Strength 0.1 0.05 Step Every 10 Epochs 

3.3. Feature Extraction and Similarity Computation 

Strategies 

3.3.1. Multi-scale Feature Aggregation 

Multi-scale feature aggregation combines information 
from different network layers to capture both local 
details and global context information. Feature pyramid 
structures extract representations at multiple 
resolutions, enabling robust place recognition across 
scale variations and viewpoint changesError! 
Reference source not found.. The aggregation process 
employs weighted fusion mechanisms that adapt feature 
contributions based on their discriminative power for 
loop closure detection tasks. 

Feature extraction occurs at three distinct network 
stages corresponding to different spatial resolutions and 
semantic levels. Early-stage features capture fine-
grained texture information essential for distinguishing 

visually similar locations. Mid-level features encode 
structural patterns and geometric relationships, while 
high-level features represent semantic content and 
global scene characteristics. 

Adaptive pooling operations normalize spatial 
dimensions across different feature scales, enabling 
effective feature concatenation and fusion. The pooling 
strategy preserves spatial relationships while reducing 
computational requirements for similarity computation. 
Attention-weighted aggregation assigns importance 
weights to different feature scales based on their 
relevance to current input characteristics. 

 

 

 

 

Figure 2: Multi-scale Feature Extraction Pipeline 
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This visualization presents the complete multi-scale 
feature extraction pipeline showing how features are 
extracted at three different network depths. The diagram 
displays input images being processed through the 
lightweight backbone network, with feature extraction 
points marked at early, middle, and late stages. Each 
extraction point shows different spatial resolutions and 
channel dimensions. The figure includes detailed 
feature map visualizations showing how early features 
capture texture details, middle features encode structural 
patterns, and late features represent semantic 
information. Adaptive pooling operations are illustrated 
with dimension transformation arrows. The attention-
weighted aggregation module is shown combining 
multi-scale features into unified representations. Color 
gradients indicate feature importance weights, while 
feature map sizes are annotated with specific 
dimensions. The pipeline demonstrates how multi-scale 
information contributes to robust place recognition 
capabilities. 

3.3.2. Similarity Computation Mechanisms 

Cosine similarity computation provides robust distance 
metrics for feature comparison while maintaining 
computational efficiency suitable for real-time 

applications. The normalized dot product operation 
enables scale-invariant similarity measurement, 
reducing sensitivity to feature magnitude variations 
caused by different illumination conditions or exposure 
settingsError! Reference source not found.. This 
distance metric demonstrates superior performance 
compared to Euclidean distance in high-dimensional 
feature spaces. 

Feature normalization procedures ensure consistent 
similarity computation across different environmental 
conditions. L2 normalization projects features onto unit 
hyperspheres, enabling meaningful cosine similarity 
computation while reducing the impact of feature 
magnitude variations. Batch normalization statistics 
adaptation accommodates domain shifts between 
training and deployment environments. 

Threshold selection strategies determine optimal 
decision boundaries for loop closure detection. 
Adaptive thresholding mechanisms adjust detection 
thresholds based on current feature distribution 
characteristics and historical performance metrics. The 
threshold adaptation process considers both precision 
and recall requirements while maintaining real-time 
processing capabilities essential for robotic 
applications. 

Table 4: Similarity Computation Performance 

Distance Metric Computation Time (ms) Memory Usage (MB) Precision (%) Recall (%) 

Cosine Similarity 0.23 2.1 94.2 91.8 

Euclidean Distance 0.31 2.1 89.7 88.3 

Manhattan Distance 0.28 2.1 87.5 85.9 

Hamming Distance 0.19 1.8 82.3 79.7 

3.3.3. Temporal Consistency Constraints 

Temporal consistency mechanisms leverage sequential 
information to improve loop closure detection 
reliability. The temporal filtering approach considers 
detection confidence over multiple consecutive frames, 
reducing false positive rates caused by transient visual 
similaritiesError! Reference source not found.. 
Moving average filters smooth confidence scores while 
preserving genuine loop closure signals. 

Geometric verification procedures validate potential 
loop closures through pose consistency checks and 
landmark triangulation analysis. RANSAC-based 
outlier removal eliminates false correspondences while 
preserving valid geometric relationships. The 
verification process considers both feature-level 
correspondences and global geometric constraints to 
ensure detection reliability. 

Memory management strategies maintain efficient 
keyframe databases while preserving essential temporal 
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information. Keyframe selection algorithms identify 
representative frames that capture significant visual 
changes while discarding redundant information. The 
selection process balances memory requirements with 
loop closure detection performance, ensuring 
sustainable operation in long-term autonomous 
missions. 

4. Experiments and Results 

4.1. Experimental Setup and Dataset Introduction 

Network training employs Adam optimizer with initial 
learning rate set to 0.001 and exponential decay 
scheduling. Batch size configuration adapts to available 
GPU memory while maintaining stable gradient 
computation, typically set to 32 samples per batch. 
Training duration spans 100 epochs with early stopping 
mechanisms based on validation loss convergence 
criteria. 

4.1.1. Dataset Configuration and Preprocessing 

Experimental validation employs three standard 
datasets representing diverse environmental conditions 
and operational scenarios. The TUM RGB-D dataset 

provides indoor sequences with ground truth trajectory 
information, enabling precise quantitative evaluation of 
loop closure detection performance. Selected sequences 
include fr1/office, fr2/desk, and fr3/cabinet, 
representing typical indoor environments with varying 
complexity levels and motion patterns. 

KITTI dataset sequences offer outdoor vehicular 
scenarios with challenging illumination conditions and 
scale variations. Sequences 00, 02, 05, and 06 provide 
comprehensive evaluation scenarios including urban 
environments, residential areas, and highway 
conditions. The dataset's stereo camera configurations 
enable robust ground truth establishment through visual 
odometry validation and GPS reference data. 

New College dataset contributes outdoor pedestrian 
scenarios with significant viewpoint variations and 
seasonal appearance changes. The dataset includes 
multiple traversals of identical routes under different 
weather conditions and lighting scenarios, providing 
robust evaluation of algorithm generalization 
capabilities. Image preprocessing involves resize 
operations to 224×224 resolution with standard 
normalization procedures matching training 
configurations. 

Table 5: Dataset Characteristics Summary 

Dataset Environment Sequences Total Images Loop Closures Trajectory Length (m) 

TUM RGB-D Indoor 3 2,847 156 73.2 

KITTI Outdoor 4 18,542 387 12,847.6 

New College Outdoor 2 3,521 203 2,145.8 

 

4.1.2. Implementation Details and Training 

Configuration 

Data augmentation strategies enhance model 
generalization by simulating realistic environmental 
variations. Augmentation techniques include random 
rotation (±10 degrees), brightness adjustment (±20%), 
contrast variation (±15%), and Gaussian noise injection 
(σ=0.01). These transformations approximate real-

world operational conditions while preserving essential 
visual features for place recognition. 

Hardware configuration employs NVIDIA RTX 3080 
GPU with 10GB memory for training procedures and 
Intel i7-10700K CPU for inference timing evaluation. 
Implementation utilizes PyTorch framework with 
CUDA acceleration for efficient neural network 
operations. Timing measurements exclude data loading 
overhead to focus on algorithm computational 
requirements. 

Figure 3: Training Convergence Analysis 
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The convergence analysis visualization displays 
training and validation loss curves across 100 epochs for 
all three datasets. The figure shows multiple panels, 
each representing different dataset training 
progressions. Loss curves demonstrate smooth 
convergence patterns with minimal overfitting, 
indicated by close alignment between training and 
validation metrics. Learning rate decay schedules are 
overlaid showing exponential reduction patterns. The 
visualization includes attention weight evolution over 
training epochs, demonstrating how attention 
mechanisms learn to focus on discriminative features. 
Gradient norm plots indicate stable training dynamics 
without gradient explosion or vanishing problems. 
Color coding distinguishes between different loss 
components including classification loss, attention 
regularization, and total combined loss. Statistical 
confidence intervals are shown as shaded regions 
around mean curves, computed from multiple 
independent training runs. The figure effectively 
demonstrates the stability and effectiveness of the 
proposed training methodology. 

4.2. Performance Evaluation Metrics and 

Comparative Experiments 

4.2.1. Quantitative Performance Analysis 

Precision and recall metrics quantify loop closure 
detection accuracy across different confidence 
thresholds. Precision measures the proportion of correct 
detections among all positive predictions, while recall 
evaluates the fraction of actual loop closures 
successfully identified. F1-score computation balances 
precision and recall considerations, providing unified 
performance assessment suitable for algorithm 
comparison. 

Average Precision (AP) calculations integrate 
precision-recall curves to provide threshold-
independent performance measures. The metric 
accommodates varying operational requirements where 
different precision-recall trade-offs may be preferred. 
Area Under Curve (AUC) analysis evaluates 
discriminative capability across complete threshold 
ranges, indicating algorithm reliability in diverse 
operational scenarios. 

Computational efficiency metrics include inference 
time measurements, memory utilization analysis, and 
energy consumption evaluation. Frame processing rates 
determine real-time feasibility while memory 
requirements influence deployment feasibility on 
resource-constrained platforms. Energy consumption 
analysis considers both computational and memory 
access overhead, relevant for battery-powered mobile 
robots. 

Table 6: Comparative Performance Results 
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Method Precision (%) Recall (%) F1-Score (%) AP (%) Inference Time (ms) 

ORB-SLAM2 78.3 72.1 75.1 71.2 45.7 

DBoW3 81.7 75.8 78.6 74.3 38.2 

CNN-LCD 89.2 85.4 87.2 83.7 67.1 

NetVLAD 91.5 87.9 89.7 86.2 52.3 

Proposed 94.2 91.8 93.0 89.5 31.4 

4.2.2. Ablation Study Analysis 

Ablation studies systematically evaluate individual 
component contributions to overall system 
performance. Baseline configuration employs standard 
MobileNetV2 architecture without attention 
mechanisms, establishing reference performance levels. 
Progressive component addition quantifies incremental 
improvements attributable to specific design choices. 

Attention mechanism ablation compares different 
attention module configurations including SE-Net, 
CBAM, and the proposed ECA implementation. 
Performance comparison considers both accuracy 
improvements and computational overhead associated 
with each attention variant. Results demonstrate ECA 
module superiority in balancing performance gains with 
efficiency requirements. 

Feature aggregation strategy evaluation compares 
single-scale versus multi-scale feature extraction 
approaches. Multi-scale fusion demonstrates superior 
performance in handling scale variations and viewpoint 
changes, justifying additional computational 
complexity. Temporal consistency mechanism 
evaluation shows significant false positive reduction 
without compromising genuine loop closure detection 
rates. 

 

 

 

Table 7: Ablation Study Results 

Configuration Precision (%) Recall (%) F1-Score (%) Parameters (M) FLOPs (G) 

Baseline MobileNetV2 86.7 82.3 84.4 3.47 0.585 

+ ECA Attention 91.2 87.6 89.4 3.52 0.598 

+ Multi-scale Features 93.1 89.8 91.4 3.61 0.627 

+ Temporal Consistency 94.2 91.8 93.0 3.61 0.627 
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4.3. Computational Efficiency and Accuracy 

Analysis 

4.3.1. Real-time Performance Evaluation 

Frame processing rate analysis demonstrates real-time 
feasibility across different hardware configurations. 
Desktop GPU evaluation achieves processing rates 
exceeding 60 FPS, suitable for high-frequency control 
applications. Mobile GPU testing using Jetson Xavier 
NX maintains processing rates above 20 FPS, adequate 
for most robotic navigation scenarios. 

Memory utilization analysis considers both model 
parameters and runtime memory requirements. Peak 

memory consumption remains below 50MB during 
inference operations, enabling deployment on memory-
constrained embedded systems. Memory access patterns 
demonstrate cache-friendly behavior, reducing memory 
bandwidth requirements and improving energy 
efficiency. 

Energy consumption measurement employs specialized 
hardware monitoring to quantify computational power 
requirements. The lightweight architecture achieves 
significant energy savings compared to larger deep 
learning models while maintaining competitive 
accuracy performance. Energy efficiency improvements 
enable extended operational duration for battery-
powered autonomous systems. 

Figure 4: Computational Efficiency Comparison 

 

The efficiency comparison visualization presents 
comprehensive performance analysis across multiple 
dimensions. Bar charts compare inference times across 
different methods and hardware platforms, showing 
significant improvements achieved by the proposed 
lightweight approach. Memory utilization graphs 
display peak and average memory consumption during 
operation. Energy consumption measurements are 
presented as power draw over time during continuous 
operation. The figure includes scalability analysis 
showing how performance metrics change with 
increasing sequence lengths and database sizes. 
Platform-specific performance breakdowns 
demonstrate compatibility across different hardware 
configurations from high-end GPUs to embedded 
systems. Efficiency gains are quantified both in absolute 
terms and relative improvements over baseline methods. 

The visualization effectively demonstrates the practical 
advantages of the proposed approach for real-world 
deployment scenarios. 

4.3.2. Robustness Analysis Under Challenging 

Conditions 

Environmental variation testing evaluates algorithm 
performance under controlled illumination changes, 
motion blur, and occlusion conditions. Synthetic 
variation application to standard datasets enables 
systematic robustness assessment across gradually 
increasing disturbance levels. Results demonstrate 
superior robustness compared to traditional methods 
while maintaining computational efficiency advantages. 

Seasonal variation analysis employs datasets with 
multiple temporal acquisitions of identical locations 
under different weather and lighting conditions. The 
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attention mechanism enables adaptive feature focus, 
improving performance consistency across seasonal 
appearance variations. Long-term operation testing 
validates sustained performance over extended 
deployment periods without degradation. 

Cross-dataset generalization evaluation assesses model 
transferability across different environmental conditions 

and sensor configurations. Pre-trained models 
demonstrate effective transfer learning capabilities, 
requiring minimal fine-tuning for adaptation to new 
operational domains. Generalization performance 
indicates robust feature learning that captures 
environment-independent visual characteristics 
essential for reliable place recognition. 

Table 8: Robustness Analysis Results 

Condition Baseline Performance (%) Proposed Performance (%) Improvement (%) 

Normal Illumination 84.4 93.0 +10.2 

Low Light 67.2 85.7 +27.5 

Motion Blur 71.8 87.3 +21.6 

Partial Occlusion 74.5 89.1 +19.6 

Weather Variation 69.3 83.8 +20.9 

5. Conclusion and Future Work 

5.1. Summary of Main Research Achievements 

This research successfully addresses computational 
efficiency challenges in visual SLAM loop closure 
detection while maintaining high accuracy performance 
standards. The proposed lightweight neural network 
architecture demonstrates significant improvements 
over traditional methods through strategic integration of 
attention mechanisms within compressed network 
structures. Experimental validation across multiple 
standard datasets confirms superior performance 
characteristics suitable for real-world robotic 
applications. 

The attention mechanism implementation achieves 
selective feature enhancement without proportional 
computational overhead increases. ECA module 
integration provides optimal balance between 
performance improvements and efficiency 
requirements, enabling real-time operation on resource-
constrained platforms. Multi-scale feature aggregation 
captures essential visual information across different 
semantic levels, improving robustness to environmental 
variations and viewpoint changes. 

Comprehensive evaluation demonstrates substantial 
improvements in both accuracy metrics and 
computational efficiency measures. The proposed 
approach achieves 94.2% precision and 91.8% recall 
while reducing inference time by 30.8% compared to 
comparable deep learning methods. These results 
establish practical viability for deployment in 
autonomous robotic systems requiring reliable place 
recognition capabilities under computational 
constraints. 

5.2. Discussion of Method Limitations 

Current implementation limitations include dependency 
on pre-trained backbone networks that may not capture 
domain-specific visual characteristics optimally. 
Transfer learning approaches partially address this 
limitation but may require additional fine-tuning for 
specialized operational environments. The attention 
mechanism design focuses primarily on channel-wise 
feature recalibration, potentially missing spatial 
attention opportunities that could further enhance 
performance. 

Memory requirements, while significantly reduced 
compared to traditional deep learning approaches, still 
exceed capabilities of extremely resource-constrained 
embedded systems. Model quantization and pruning 
techniques provide partial solutions but introduce 
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accuracy trade-offs that may affect performance in 
challenging scenarios. Real-time operation depends on 
adequate computational resources that may not be 
available in all deployment contexts. 

Generalization capabilities across significantly different 
sensor configurations and environmental conditions 
require additional validation. Current evaluation focuses 
on standard camera configurations and typical 
indoor/outdoor scenarios. Performance under extreme 
environmental conditions or with alternative sensor 
modalities remains to be thoroughly investigated 
through expanded experimental validation. 

5.3. Future Research Directions and Improvement 

Suggestions 

Future research directions include exploration of 
transformer-based attention mechanisms adapted for 
computational efficiency requirements. Self-attention 
mechanisms could capture spatial relationships more 
effectively while maintaining real-time processing 
capabilities through efficient implementation strategies. 
Multi-modal fusion incorporating LiDAR or IMU data 
could enhance robustness while leveraging the proposed 
lightweight architecture foundations. 

Online learning capabilities would enable continuous 
adaptation to new environmental conditions without 
requiring offline retraining procedures. Incremental 
learning strategies could update feature representations 
while preserving previously learned knowledge, 
improving long-term operational performance. 
Federated learning approaches could enable 
collaborative knowledge sharing across multiple robotic 
systems while preserving privacy and reducing 
communication overhead. 

Hardware-specific optimization including custom 
accelerator design could further improve computational 
efficiency and energy consumption characteristics. 
Neural architecture search techniques could automate 
optimal network design for specific hardware platforms 
and performance requirements. Integration with 
emerging edge computing frameworks could enable 
distributed processing capabilities while maintaining 
real-time constraints essential for autonomous 
navigation applications. 
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