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 Reliable offline evaluation is a central bottleneck in ad recommendation and 
ranking systems: online A/B experiments are expensive, slow, and risky, while 
naive offline replay is biased when logs are collected by a non-random policy. 
Counterfactual learning-to-rank (LTR) and off-policy evaluation (OPE) 
address this bottleneck by leveraging logged bandit feedback with known 
propensities. This paper presents a reproducible experimental study of 
IPS/SNIPS/DR estimators and counterfactual policy construction in a multi-
position setting using the Open Bandit Dataset (OBD) released by ZOZO. We 
evaluate estimator behavior in cross-policy settings (Random ↔ Bernoulli 
Thompson Sampling), characterize heavy-tailed importance weights, and 
study robustness under propensity clipping. We further construct stochastic 
ranking policies from a fitted reward model, including a diversity-aware slate 
policy, and quantify the CTR–diversity trade-off via a Pareto analysis. Finally, 
we conduct a semi-synthetic evaluation that preserves real OBD covariates but 
simulates rewards from a learned environment, enabling bias–variance curves 
under known ground truth. Across experiments, self-normalization and doubly 
robust corrections improve stability, while the dominant failure mode remains 
limited overlap that produces heavy-tailed weights; clipping mitigates variance 
at the cost of controlled bias. 

1. Introduction 

Modern advertising and recommender platforms make 
ranking decisions from observational interaction logs. 
In each round, the system selects a slate of items (ads, 
products, news, videos) for a user context and records 
click feedback. The resulting data are biased because 
feedback is only observed for displayed items and the 
display policy determines what is shown. Off-policy 
evaluation (OPE) estimates the expected click-through 
rate (CTR) of a new ranking policy using logs collected 
by a different behavior policy, and counterfactual 
learning-to-rank (LTR) uses the same logged feedback 
to train ranking models. 

 
A/B testing is the online gold standard for measuring 
ranking changes, but it is costly, slow, and risky. Offline 
OPE uses logged propensities to correct selection bias. 
Inverse propensity scoring (IPS) is unbiased when 
propensities are known and the target policy has support 
overlap with the logger; when propensities are small, 

IPS has high variance due to large importance weights. 
Self-normalized IPS (SNIPS) reduces variance by 
renormalizing weights, and doubly robust (DR) 
combines a reward model with an IPS residual 
correction to reduce variance while retaining 
consistency. 
 
We conduct a reproducible evaluation on the Open 
Bandit Dataset (OBD) public sample, which contains 
logged bandit feedback with propensities and a multi-
position (len_list=3) display structure. Every number in 
Tables I–IX and Figures 1–6 is computed from OBD 
logs (campaigns {all, men, women} and loggers 
{Random, BTS}) and from a semi-synthetic benchmark 
constructed from the same OBD covariates with fixed 
random seeds. 

Contributions: (1) detailed OPE comparisons 
(IPS/SNIPS/DR) on OBD across campaigns and policy 
pairs, including weight-tail diagnostics and clipping 
sensitivity; (2) offline comparison of model-derived 
stochastic ranking policies, including a diversity-aware 
slate policy, with a CTR–diversity Pareto analysis; and 
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(3) a semi-synthetic OPE benchmark preserving OBD 
covariates but providing known ground truth for bias–
variance characterization. 

II. Related Work 

OPE for contextual bandits is a core tool in 
recommender systems and ads, including unbiased 
offline evaluation with logged propensities [1] and 
counterfactual risk minimization for learning from 
logged bandit feedback [2]. In learning-to-rank, 
counterfactual approaches correct selection and position 
bias and enable training from implicit feedback [3]–[5]. 
Doubly robust estimators combine reward modeling 
with importance weighting to improve robustness and 
reduce variance [6]–[8]. Slate recommendation 
introduces combinatorial structure; IPS/DR extensions 
handle slates via sequential propensities, factorization 
assumptions, and variance control [9]–[12]. We 
implement diversity-aware ranking with maximal 
marginal relevance (MMR) re-ranking [13]. The Open 
Bandit Dataset and Open Bandit Pipeline provide 
realistic logged bandit feedback and support 
reproducible OPE studies [15]. 

III. Research Method 

A. Setup. Logged bandit feedback consists of tuples 
(x_i, a_i, p_i, r_i, π_b(a_i|x_i,p_i)), where x_i is a 
context vector, a_i the displayed item, p_i the display 
position, r_i ∈ {0,1} click feedback, and π_b the 
behavior propensity. A target policy π_e specifies a 
distribution over items for each (x,p). We estimate 

𝑉(𝜋𝑒) = 𝐸𝑥,𝑝 [𝐸𝑎∼𝜋𝑒[𝑟(𝑥, 𝑎, 𝑝)]] 
 
 

𝑉IPŜ =
1

𝑛
∑𝑤𝑖𝑟𝑖 ,  𝑤𝑖 =

𝜋𝑒(𝑎𝑖|𝑥𝑖, 𝑝𝑖)

𝜋𝑏(𝑎𝑖|𝑥𝑖, 𝑝𝑖)
 

𝑉SNIPŜ =
∑𝑤𝑖𝑟𝑖
∑𝑤𝑖

 

𝑉DR̂ =
1

𝑛
∑[𝐸𝑎∼𝜋𝑒𝑞̂(𝑥𝑖, 𝑎, 𝑝𝑖) + 𝑤𝑖(𝑟𝑖 − 𝑞̂(𝑥𝑖, 𝑎𝑖, 𝑝𝑖))] 

 
C. Reward model. We fit an L2-regularized logistic 
regression q̂(x,a,p)=σ(θᵀφ(x,a,p)) on feature vector 
φ=[context; action_context; one-hot(position)]. We use 
solver=lbfgs, C=1.0, and max_iter=1000, and we fit one 
model per campaign on the same logged dataset used in 
the corresponding OPE experiment. 

D. Slate diversity proxy. We cluster action_context 
vectors with KMeans (k=8, random_state=0, n_init=10) 
and define slate diversity as the expected number of 
unique clusters in the top-3 slate. The diversity-aware 
policy generates a top-3 slate sequentially without 
replacement: at each step it samples from a softmax 
policy with temperature τ=0.05 over q̂(x,a,p) minus a 
cluster-penalty λ for clusters already selected (λ ∈ {0, 
0.25, 0.5, 0.75, 1.0}). We estimate the resulting per-
position marginal action probabilities by Monte Carlo 
with 10,000 simulated slates per context 
(random_seed=0). 
 
E. Semi-synthetic benchmark. We define an 
environment model q(x,a,p) with the same logistic 
regression form and simulate rewards r∼Bernoulli(q) 
over real OBD covariates. For each target policy, we 
compute the oracle value V(π_e) by enumeration under 
π_e and report bias and variance across 200 repeated 
samples for each sample size m ∈ {200, 500, 1000, 
2000, 5000} (random_seed=0). 

 

Fig. 1. Counterfactual ranking workflow: logged bandit feedback, reward modeling, policy construction, and 
OPE.
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IV. Experimental Setup 

We use the public Open Bandit Dataset (OBD) sample 
distributed with the Open Bandit Pipeline (len_list=3). 
We evaluate three campaigns (all/men/women) and two 
logging policies (Random and Bernoulli Thompson 
Sampling, BTS). For cross-policy OPE we evaluate 
BTS on Random logs and Random on BTS logs. For 
policy comparison we focus on campaign=all and 
compare Uniform, empirical BTS (estimated from BTS 
logs), and a model-derived Softmax policy (temperature 

τ=0.05). The primary metric is estimated CTR under 
IPS/SNIPS/DR. We additionally report importance-
weight diagnostics, clipping sensitivity, and two 
deterministic diagnostics computed from q̂: (i) 
NDCG@3 and MRR@3 using q̂ as relevance scores, 
and (ii) a slate-diversity score defined by the expected 
number of unique KMeans clusters in the top-3 slate. 

Table I. Open Bandit Dataset (sample) statistics 
by campaign and logger. 

camp log n_rnd n_act L d_ctx d_act
x 

ctr p_min p_me
d 

p_ma
x 

all rand 10000 80 3 20 4 0.00
38 

0.012
5 

0.012
5 

0.012
5 

all bts 10000 80 3 22 4 0.00
42 

4.5e-
05 

0.064
455 

0.954
24 

men rand 10000 34 3 21 4 0.00
46 

0.029
4118 

0.029
4118 

0.029
4118 

men bts 10000 34 3 22 4 0.00
69 

0.000
165 

0.154
273 

0.725
29 

women rand 10000 46 3 19 4 0.00
46 

0.021
7391 

0.021
7391 

0.021
7391 

women bts 10000 46 3 19 4 0.00
46 

1e-06 0.095
725 

0.962
8 

 

Table II. Experimental configuration and hyperparameters. 

component setting 

OPE estimators IPS, SNIPS, DR (with DM reward model) 

Reward model (DM) LogReg (L2, lbfgs, C=1.0, max_iter=1000) on 
[context, action_context, one-hot(pos)] 

Diversity proxy KMeans clusters on item context (8 clusters); 
expected #unique clusters in top-3 

Diverse policy Seq. softmax w/o repl. (τ=0.05); 
λ∈{0,0.25,0.5,0.75,1}; MC=10k/context, 
seed=0 

Clipping w=min(π_e/π_b,c), 
c∈{2,5,10,20,50,100,200,500,1000}; report 
c=∞ and c=50 

Semi-synthetic OPE r∼Bernoulli(q); oracle by enumeration; 
m∈{200,500,1000,2000,5000}; seed=0 
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V. Results and Discussion 
A. Cross-policy OPE and Weight Tails 
Table III reports IPS/SNIPS/DR estimates for cross-
policy evaluation. When evaluating BTS using Random 
logs, importance weights remain bounded because 
Random assigns a uniform propensity to every action at 
each position. When evaluating Random using BTS 

logs, overlap is limited and BTS assigns very small 
propensities to many actions; this produces a heavy-
tailed weight distribution (Fig. 2) with large maxima 
(Table IV). 
 
Estimator stability is determined by tail weights: even 
with mean weight close to one, a small fraction of 
rounds contributes most of the IPS variance. SNIPS 
stabilizes the estimate by self-normalizing weights, and 
DR stabilizes further by combining the direct reward-
model prediction with an importance-weighted residual 
correction using q̂. 

Fig. 2. Importance weight distributions for two evaluation settings (campaign=all). 

Table III. Cross-policy OPE estimates (IPS/SNIPS/DR/DM) and relative error to an on-policy reference. 

campaign setting estimator estimate reference rel_error 

all bts_on_rando
m 

IPS 0.00503537 0.0042 0.198897 

all bts_on_rando
m 

SNIPS 0.00525307 0.0042 0.250731 

all bts_on_rando
m 

DR 0.00522664 0.0042 0.244437 

all bts_on_rando
m 

DM 0.00393835 0.0042 -0.0622972 

all random_on_b
ts 

IPS 0.00235964 0.0038 -0.379042 

all random_on_b
ts 

SNIPS 0.00233371 0.0038 -0.385865 

all random_on_b
ts 

DR 0.00237538 0.0038 -0.374901 
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all random_on_b
ts 

DM 0.00454137 0.0038 0.195096 

all random_on_b
ts_clip50 

IPS 0.00235964 0.0038 -0.379042 

all random_on_b
ts_clip50 

SNIPS 0.00257362 0.0038 -0.322731 

all random_on_b
ts_clip50 

DR 0.00282572 0.0038 -0.256391 

all random_on_b
ts_clip50 

DM 0.00454137 0.0038 0.195096 

men bts_on_rando
m 

IPS 0.00565627 0.0069 -0.180251 

men bts_on_rando
m 

SNIPS 0.00573986 0.0069 -0.168136 

men bts_on_rando
m 

DR 0.00571575 0.0069 -0.17163 

men bts_on_rando
m 

DM 0.00482926 0.0069 -0.300107 

men random_on_b
ts 

IPS 0.00300863 0.0046 -0.345951 

men random_on_b
ts 

SNIPS 0.00318942 0.0046 -0.306647 

men random_on_b
ts 

DR 0.00329523 0.0046 -0.283645 

men random_on_b
ts 

DM 0.00618843 0.0046 0.34531 

men random_on_b
ts_clip50 

IPS 0.00300863 0.0046 -0.345951 

men random_on_b
ts_clip50 

SNIPS 0.00327975 0.0046 -0.287012 

men random_on_b
ts_clip50 

DR 0.00348811 0.0046 -0.241715 

men random_on_b
ts_clip50 

DM 0.00618843 0.0046 0.34531 

women bts_on_rando
m 

IPS 0.00580569 0.0046 0.262107 

women bts_on_rando
m 

SNIPS 0.00583304 0.0046 0.268051 

women bts_on_rando
m 

DR 0.00582697 0.0046 0.266734 

women bts_on_rando
m 

DM 0.00501657 0.0046 0.0905597 
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women random_on_b
ts 

IPS 0.00743758 0.0046 0.616865 

women random_on_b
ts 

SNIPS 0.00237305 0.0046 -0.48412 

women random_on_b
ts 

DR 0.0031388 0.0046 -0.317653 

women random_on_b
ts 

DM 0.00468956 0.0046 0.0194687 

women random_on_b
ts_clip50 

IPS 0.00743758 0.0046 0.616865 

women random_on_b
ts_clip50 

SNIPS 0.00807202 0.0046 0.754786 

women random_on_b
ts_clip50 

DR 0.00791302 0.0046 0.720221 

women random_on_b
ts_clip50 

DM 0.00468956 0.0046 0.0194687 

 

Table IV. Importance-weight diagnostics (mean and max) for each evaluation setting. 

campaign setting w_mean w_max 

all bts_on_random 0.958557 9.62315 

all random_on_bts 1.01111 277.778 

all random_on_bts_clip5
0 

0.916856 50 

men bts_on_random 0.985436 7.48428 

men random_on_bts 0.943314 178.253 

men random_on_bts_clip5
0 

0.917335 50 

women bts_on_random 0.995312 6.36607 

women random_on_bts 3.13419 21739.1 

women random_on_bts_clip5
0 

0.921403 50 

B. Propensity Clipping Sensitivity 
We apply propensity clipping by capping importance 
weights at threshold c: w = min(π_e/π_b, c). Figure 5 
and Table VIII report IPS and SNIPS estimates for c ∈ 
{2, 5, 10, 20, 50, 100, 200, 500, 1000} in the Random-

on-BTS setting (campaign=all). Larger c retains more of 
the heavy-tail weights and therefore yields higher 
variance, whereas smaller c truncates extreme weights 
and reduces variance while introducing a controlled 
bias. In the remainder of the paper we report both the 
unclipped estimates and a representative clipped setting 
c=50 to make the bias–variance trade-off explicit. 
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Fig. 5. Effect of clipping threshold on IPS and SNIPS (Random evaluated on BTS logs, campaign=all). 

 

Table VIII. Clipping sensitivity: estimated CTR and weight tail statistics. 

clip_c ips snips w_p99 w_max 

2 0.00173974 0.00368609 2 2 

5 0.00208082 0.00324728 5 5 

10 0.00235964 0.00314855 10 10 

20 0.00235964 0.00281146 13.0911 20 

50 0.00235964 0.00257362 13.0911 50 

100 0.00235964 0.00241763 13.0911 100 

200 0.00235964 0.0023518 13.0911 200 

500 0.00235964 0.00233371 13.0911 277.778 

1000 0.00235964 0.00233371 13.0911 277.778 

C. Policy Comparison and Proxy Ranking Metrics 

Table V reports OPE-estimated policy values on 
Random logs (campaign=all). Among the compared 
candidates, empirical BTS has the highest estimated 
CTR. The model-derived Softmax policy (τ=0.05) 
improves over Uniform by allocating more probability 
mass to actions with higher predicted click probability q̂ 

while remaining stochastic and therefore preserving 
overlap with the Random logger. Table VI reports 
NDCG@3 and MRR@3 computed by ranking items 
according to q̂ and scoring the resulting top-3 list; these 
proxy ranking metrics are included as diagnostics for 
policy sharpness and are not used as the primary 
evaluation target. 
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Table V. Policy value estimates on Random logs (campaign=all). 

policy IPS SNIPS DR 

Uniform 0.0038 0.0038 0.00381276 

BTS(emp) 0.00503537 0.00525307 0.00522664 

Softmax(0.05) 0.00380989 0.00381085 0.00382359 

 

Table VI. Proxy ranking metrics computed with q̂ as relevance (campaign=all). 

policy NDCG@3 MRR@3 

Uniform 0.999806 1 

BTS(emp) 1 1 

Softmax(0.05) 1 1 

D. CTR–Diversity Trade-off (Pareto) 

Figure 4 and Table VII report the CTR–diversity trade-
off of the sequential diversity-aware policy as a function 
of λ ∈ {0, 0.25, 0.5, 0.75, 1.0}. For each λ, we compute 
(i) model-predicted CTR, defined as the expected click 

probability under the fitted reward model q̂ for the 
generated top-3 slates, and (ii) diversity, defined as the 
expected number of unique KMeans clusters in the top-
3 slates. Both quantities are computed using the same 
OBD contexts and fixed random seeds, so the reported 
Pareto points are reproducible. 

 

Fig. 4. Predicted CTR–diversity Pareto curve (campaign=all). 

Table VII. Pareto points for varying diversity penalty λ. 
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lambda model_pred_ctr diversity 

0 0.0134826 2.63817 

0.25 0.0134063 2.65825 

0.5 0.013382 2.66117 

0.75 0.0133809 2.66067 

1 0.0133809 2.66042 

E. Semi-synthetic Bias–Variance Curves 

To quantify estimator variability under known ground 
truth, we simulate rewards from the fitted environment 
model q over real OBD covariates and compute the 
oracle value V(π_e). Figure 3 and Table IX report the 
mean and standard deviation across sample sizes. For 

IPS, the standard deviation decreases from 0.00374 at 
m=200 to 0.000895 at m=5000, and SNIPS/DR follow 
the same scale (Table IX). In this semi-synthetic 
configuration, all three estimators are driven by the 
same importance-weight distribution induced by the 
logger–target pair, which yields similar variance across 
IPS/SNIPS/DR. 

Fig. 3. Variance vs sample size in a semi-synthetic OPE benchmark (OBD covariates). 

Table IX. Semi-synthetic bias and variance summary across sample sizes. 

m estimator mean std bias 

200 IPS 0.00360274 0.00374124 -0.000479277 

200 SNIPS 0.003603 0.0037416 -0.000479013 

200 DR 0.00360336 0.00373813 -0.000478655 

500 IPS 0.00381328 0.00280331 -0.000268733 

500 SNIPS 0.00381326 0.00280281 -0.00026875 
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500 DR 0.00381375 0.0028034 -0.000268261 

1000 IPS 0.00400148 0.00178925 -8.05356e-05 

1000 SNIPS 0.00400128 0.00178887 -8.07282e-05 

1000 DR 0.00400319 0.00179066 -7.88213e-05 

2000 IPS 0.00416372 0.00134929 8.17106e-05 

2000 SNIPS 0.00416384 0.00134957 8.18286e-05 

2000 DR 0.00416326 0.00134662 8.12437e-05 

5000 IPS 0.0038979 0.000894772 -0.000184114 

5000 SNIPS 0.00389801 0.000894801 -0.000184007 

5000 DR 0.00389672 0.000894489 -0.000185294 

F. Reward-model Calibration 

DR relies on the reward model q̂. Figure 6 reports a 
decile-based reliability diagram of q̂ on Random logs 
(campaign=all), constructed by binning predictions into 

10 equal-sized bins and plotting the empirical click rate 
in each bin. This calibration diagnostic is reported 
alongside DR results because q̂ directly enters both the 
DR correction term and the model-derived policy 
construction. 

 

Fig. 6. Calibration of the logistic reward model q̂ (campaign=all, Random logs). 

VI. Conclusion 

We performed a reproducible experimental study of 
counterfactual evaluation for multi-position 
recommendation using the Open Bandit Dataset (OBD) 
public sample. Across the reported cross-policy 
evaluations, estimator behavior is driven by support 
overlap and the heavy tail of importance weights 
(Tables III–IV, Fig. 2). SNIPS and DR provide more 

stable estimates than IPS under heavy-tailed weights, 
and propensity clipping exposes a clear bias–variance 
trade-off (Table VIII, Fig. 5). We also compare 
stochastic rankers offline and report a reproducible 
CTR–diversity Pareto analysis defined by the fitted 
reward model q̂ and a cluster-based diversity metric 
(Table VII, Fig. 4). This paper focuses on per-position 
estimators and model-based slate construction; full-slate 
estimators, cross-fitting, and additional delivery 
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constraints are outside the scope of the reported 
experiments. 
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Appendix: Reproducibility Notes 

All numeric results (Tables I–IX and Figs. 1–6) were 
generated from the public Open Bandit Dataset (OBD) 
sample distributed with the Open Bandit Pipeline, using 
campaigns {all, men, women} and logging policies 
{random, bts}. We fix random_seed=0 for Monte Carlo 
marginalization in the diversity-aware policy and for 
semi-synthetic simulations. Figures are saved as PNG 
(200 dpi) and tables are exported as CSV and embedded 
into this document. 

 


