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Reliable offline evaluation is a central bottleneck in ad recommendation and
ranking systems: online A/B experiments are expensive, slow, and risky, while
naive offline replay is biased when logs are collected by a non-random policy.
Counterfactual learning-to-rank (LTR) and off-policy evaluation (OPE)
address this bottleneck by leveraging logged bandit feedback with known
propensities. This paper presents a reproducible experimental study of
IPS/SNIPS/DR estimators and counterfactual policy construction in a multi-
position setting using the Open Bandit Dataset (OBD) released by ZOZO. We
evaluate estimator behavior in cross-policy settings (Random < Bernoulli
Thompson Sampling), characterize heavy-tailed importance weights, and
study robustness under propensity clipping. We further construct stochastic
ranking policies from a fitted reward model, including a diversity-aware slate
policy, and quantify the CTR—diversity trade-off via a Pareto analysis. Finally,
we conduct a semi-synthetic evaluation that preserves real OBD covariates but
simulates rewards from a learned environment, enabling bias—variance curves
under known ground truth. Across experiments, self-normalization and doubly
robust corrections improve stability, while the dominant failure mode remains
limited overlap that produces heavy-tailed weights; clipping mitigates variance
at the cost of controlled bias.

1. Introduction

IPS has high variance due to large importance weights.
Self-normalized IPS (SNIPS) reduces variance by
renormalizing weights, and doubly robust (DR)

Modern advertising and recommender platforms make
ranking decisions from observational interaction logs.
In each round, the system selects a slate of items (ads,
products, news, videos) for a user context and records
click feedback. The resulting data are biased because
feedback is only observed for displayed items and the
display policy determines what is shown. Off-policy
evaluation (OPE) estimates the expected click-through
rate (CTR) of a new ranking policy using logs collected
by a different behavior policy, and counterfactual
learning-to-rank (LTR) uses the same logged feedback
to train ranking models.

A/B testing is the online gold standard for measuring
ranking changes, but it is costly, slow, and risky. Offline
OPE uses logged propensities to correct selection bias.
Inverse propensity scoring (IPS) is unbiased when
propensities are known and the target policy has support
overlap with the logger; when propensities are small,

combines a reward model with an IPS residual
correction to reduce variance while retaining
consistency.

We conduct a reproducible evaluation on the Open
Bandit Dataset (OBD) public sample, which contains
logged bandit feedback with propensities and a multi-
position (len list=3) display structure. Every number in
Tables I-IX and Figures 1-6 is computed from OBD
logs (campaigns {all, men, women} and loggers
{Random, BTS}) and from a semi-synthetic benchmark
constructed from the same OBD covariates with fixed
random seeds.

Contributions: (1) detailed OPE comparisons
(IPS/SNIPS/DR) on OBD across campaigns and policy
pairs, including weight-tail diagnostics and clipping
sensitivity; (2) offline comparison of model-derived
stochastic ranking policies, including a diversity-aware
slate policy, with a CTR—diversity Pareto analysis; and
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(3) a semi-synthetic OPE benchmark preserving OBD
covariates but providing known ground truth for bias—
variance characterization.

II. Related Work

OPE for contextual bandits is a core tool in
recommender systems and ads, including unbiased
offline evaluation with logged propensities [1] and
counterfactual risk minimization for learning from
logged bandit feedback [2]. In learning-to-rank,
counterfactual approaches correct selection and position
bias and enable training from implicit feedback [3]-[5].
Doubly robust estimators combine reward modeling
with importance weighting to improve robustness and
reduce variance [6]-[8]. Slate recommendation
introduces combinatorial structure; IPS/DR extensions
handle slates via sequential propensities, factorization
assumptions, and variance control [9]-[12]. We
implement diversity-aware ranking with maximal
marginal relevance (MMR) re-ranking [13]. The Open
Bandit Dataset and Open Bandit Pipeline provide
realistic logged bandit feedback and support
reproducible OPE studies [15].

II1. Research Method

A. Setup. Logged bandit feedback consists of tuples
(xi, ai, pi, ri, mb(aix i,p i)), where x i is a
context vector, a i the displayed item, p i the display
position, r i € {0,1} click feedback, and w b the
behavior propensity. A target policy m e specifies a
distribution over items for each (x,p). We estimate

V(o) = Exp |Eqem, [r(x,a,p)]]

Reward model
4(x.a,p)

Logged bandit data
(x, a, p,r,nb)

e —
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Ve = 2wty
SNIPS =
xw;

— 1
Vpr = EZ[ane@(xi:a: pi) + wi(ri — §(xi, ai,p)]

C. Reward model. We fit an L2-regularized logistic
regression q(x,a,p)=c(07p(x,a,p)) on feature vector
@=[context; action context; one-hot(position)]. We use
solver=Ibfgs, C=1.0, and max_iter=1000, and we fit one
model per campaign on the same logged ‘dataset used in
the corresponding OPE experiment.

D. Slate diversity proxy. We cluster action context
vectors with KMeans (k=8, random state=0, n init=10)
and define slate diversity as the expected number of
unique clusters in the top-3 slate. The diversity-aware
policy generates a top-3 slate sequentially without
replacement: at each step it samples from a softmax
policy with temperature t=0.05 over §(x,a,p) minus a
cluster-penalty A for clusters already selected (A € {0,
0.25, 0.5, 0.75, 1.0}). We estimate the resulting per-
position marginal action probabilities by Monte Carlo

with 10,000 simulated slates per context
(random seed=0).
E. Semi-synthetic benchmark. We define an

environment model q(x,a,p) with the same logistic
regression form and simulate rewards r~Bernoulli(q)
over real OBD covariates. For each target policy, we
compute the oracle value V(n e) by enumeration under
7 e and report bias and variance across 200 repeated
samples for each sample size m € {200, 500, 1000,
2000, 5000} (random_seed=0).

Candidate policies

_e(-|x,p) —

OPE: IPS / SNIPS / DR

/

Counterfactual policy learning
(IPS-weighted objectives)

Fig. 1. Counterfactual ranking workflow: logged bandit feedback, reward modeling, policy construction, and
OPE.
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IV. Experimental Setup

We use the public Open Bandit Dataset (OBD) sample
distributed with the Open Bandit Pipeline (len list=3).
We evaluate three campaigns (all/men/women) and two
logging policies (Random and Bernoulli Thompson
Sampling, BTS). For cross-policy OPE we evaluate
BTS on Random logs and Random on BTS logs. For
policy comparison we focus on campaign=all and
compare Uniform, empirical BTS (estimated from BTS

ISSN: 3066-3962

1=0.05). The primary metric is estimated CTR under
IPS/SNIPS/DR. We additionally report importance-
weight diagnostics, clipping sensitivity, and two
deterministic diagnostics computed from q§: (1)
NDCG@3 and MRR@3 using q as relevance scores,
and (ii) a slate-diversity score defined by the expected

number of unique KMeans clusters in the top-3 slate.

Table I. Open Bandit Dataset (sample) statistics
by campaign and logger.

logs), and a model-derived Softmax policy (temperature
camp log n_rnd n_act L d_ctx d_act | ctr p_min | p_me p_ma
X d X

all rand 10000 80 3 20 4 0.00 0.012 | 0.012 | 0.012
38 5 5 5

all bts 10000 80 3 22 4 0.00 4.5e- 0.064 | 0.954
42 05 455 24

men rand 10000 34 3 21 4 0.00 0.029 | 0.029 | 0.029
46 4118 4118 4118

men bts 10000 34 3 22 4 0.00 0.000 | 0.154 | 0.725
69 165 273 29

women rand 10000 46 3 19 4 0.00 0.021 0.021 0.021
46 7391 7391 7391

women bts 10000 46 3 19 4 0.00 1e-06 | 0.095 | 0.962
46 725 8

Table II. Experimental configuration and hyperparameters.
component setting

OPE estimators

IPS, SNIPS, DR (with DM reward model)

Reward model (DM)

LogReg (L2, Ibfgs, C=1.0, max_iter=1000) on
[context, action_context, one-hot(pos)]

Diversity proxy

KMeans clusters on item context (8 clusters);
expected #unique clusters in top-3

Diverse policy

Seq.  softmax w/o repl.  (1=0.05);
1€{0,0.25,0.5,0.75,1}; MC=10k/context,
seed=0

Clipping w=min(n_e/m_b,c),
c€{2,5,10,20,50,100,200,500,1000};  report
c=o0 and ¢=50

Semi-synthetic OPE r~Bernoulli(q); oracle by enumeration;

me {200,500,1000,2000,5000}; seed=0
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V. Results and Discussion

A. Cross-policy OPE and Weight Tails

Table III reports IPS/SNIPS/DR estimates for cross-
policy evaluation. When evaluating BTS using Random
logs, importance weights remain bounded because
Random assigns a uniform propensity to every action at
each position. When evaluating Random using BTS

ISSN: 3066-3962

logs, overlap is limited and BTS assigns very small
propensities to many actions; this produces a heavy-
tailed weight distribution (Fig. 2) with large maxima
(Table V).

Estimator stability is determined by tail weights: even
with mean weight close to one, a small fraction of
rounds contributes most of the IPS variance. SNIPS
stabilizes the estimate by self-normalizing weights, and
DR stabilizes further by combining the direct reward-
model prediction with an importance-weighted residual
correction using q.

104,

103 -

102 B

Count (log scale)

101-

10° 4

Evaluate BTS on Random logs
Evaluate Random on BTS logs

0 50 100

150 200 250

Importance weight w = mt_e(a|x,p)/m_b(a|x,p)

Fig. 2. Importance weight distributions for two evaluation settings (campaign=all).

Table III. Cross-policy OPE estimates (IPS/SNIPS/DR/DM) and relative error to an on-policy reference.

campaign setting estimator estimate reference rel error
all bts on_rando | IPS 0.00503537 | 0.0042 0.198897
m
all bts on_rando | SNIPS 0.00525307 | 0.0042 0.250731
m
all bts on rando | DR 0.00522664 | 0.0042 0.244437
m
all bts on rando | DM 0.00393835 0.0042 -0.0622972
m
all iandomﬁonﬁb IPS 0.00235964 0.0038 -0.379042
]
all iandomfonﬁb SNIPS 0.00233371 0.0038 -0.385865
]
all :andomfonfb DR 0.00237538 0.0038 -0.374901
]
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all random on b | DM 0.00454137 0.0038 0.195096
ts

all random on b | IPS 0.00235964 0.0038 -0.379042
ts_clip50

all random on b | SNIPS 0.00257362 0.0038 -0.322731
ts_clip50

all random on b | DR 0.00282572 0.0038 -0.256391
ts_clip50

all random on b | DM 0.00454137 0.0038 0.195096
ts_clip50

men bts on rando | IPS 0.00565627 0.0069 -0.180251
m

men bts on rando | SNIPS 0.00573986 0.0069 -0.168136
m

men bts on rando | DR 0.00571575 0.0069 -0.17163
m

men bts on rando | DM 0.00482926 0.0069 -0.300107
m

men random on b | IPS 0.00300863 0.0046 -0.345951
ts

men random on b | SNIPS 0.00318942 0.0046 -0.306647
ts

men random on b | DR 0.00329523 0.0046 -0.283645
ts

men random on b | DM 0.00618843 0.0046 0.34531
ts

men random on b | IPS 0.00300863 0.0046 -0.345951
ts_clip50

men random on b | SNIPS 0.00327975 0.0046 -0.287012
ts_clip50

men random on b | DR 0.00348811 0.0046 -0.241715
ts_clip50

men random on b | DM 0.00618843 0.0046 0.34531
ts_clip50

women bts on rando | IPS 0.00580569 0.0046 0.262107
m

women bts on rando | SNIPS 0.00583304 0.0046 0.268051
m

women bts on rando | DR 0.00582697 0.0046 0.266734
m

women bts on rando | DM 0.00501657 0.0046 0.0905597
m
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women random on b | IPS 0.00743758 0.0046 0.616865
ts

women random on b | SNIPS 0.00237305 0.0046 -0.48412
ts

women random on b | DR 0.0031388 0.0046 -0.317653
ts

women random on b | DM 0.00468956 0.0046 0.0194687
ts

women random on b | IPS 0.00743758 0.0046 0.616865
ts_clip50

women random on b | SNIPS 0.00807202 0.0046 0.754786
ts_clip50

women random on b | DR 0.00791302 0.0046 0.720221
ts_clip50

women random on b | DM 0.00468956 0.0046 0.0194687
ts_clip50

Table IV. Importance-weight diagnostics (mean and max) for each evaluation setting.

campaign setting Ww_mean W_max
all bts on random 0.958557 9.62315
all random_on_bts 1.01111 277.778
all BandomionibtsiclipS 0.916856 50

men bts on random 0.985436 7.48428
men random_on_bts 0.943314 178.253
men BandomionibtsiclipS 0.917335 50
women bts on_random 0.995312 6.36607
women random_on_bts 3.13419 21739.1
women BandomionibtsiclipS 0.921403 50

B. Propensity Clipping Sensitivity

We apply propensity clipping by capping importance
weights at threshold ¢: w = min(n e/n b, c). Figure 5
and Table VIII report IPS and SNIPS estimates for c €
{2, 5, 10, 20, 50, 100, 200, 500, 1000} in the Random-

on-BTS setting (campaign=all). Larger c retains more of
the heavy-tail weights and therefore yields higher
variance, whereas smaller ¢ truncates extreme weights
and reduces variance while introducing a controlled
bias. In the remainder of the paper we report both the
unclipped estimates and a representative clipped setting
¢=50 to make the bias—variance trade-off explicit.
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Effect of clipping on Random-on-BTS evaluation (campaign=all)

0.00375 A

0.00350 1

0.00325 4

0.00300 1

0.00275 A

0.00250 4

Estimated CTR

—8— |PS (clipped)
SNIPS (clipped)

0.00225 4

0.00200 A

0.00175 4

T T
10t 103

10° 107 10°

Clipping threshold c (log scale)

Fig. 5. Effect of clipping threshold on IPS and SNIPS (Random evaluated on BTS logs, campaign=all).

Table VIII. Clipping sensitivity: estimated CTR and weight tail statistics.

clip_c ips snips w_p99 W_max
2 0.00173974 0.00368609 2 2

5 0.00208082 0.00324728 5 5

10 0.00235964 0.00314855 10 10

20 0.00235964 0.00281146 13.0911 20

50 0.00235964 0.00257362 13.0911 50

100 0.00235964 0.00241763 13.0911 100

200 0.00235964 0.0023518 13.0911 200

500 0.00235964 0.00233371 13.0911 277.778
1000 0.00235964 0.00233371 13.0911 277.778

C. Policy Comparison and Proxy Ranking Metrics

Table V reports OPE-estimated policy values on
Random logs (campaign=all). Among the compared
candidates, empirical BTS has the highest estimated
CTR. The model-derived Softmax policy (t=0.05)
improves over Uniform by allocating more probability
mass to actions with higher predicted click probability q

while remaining stochastic and therefore preserving
overlap with the Random logger. Table VI reports
NDCG@3 and MRR@3 computed by ranking items
according to g and scoring the resulting top-3 list; these
proxy ranking metrics are included as diagnostics for
policy sharpness and are not used as the primary
evaluation target.

Vol. 5(12), pp. 1-11, December 2025
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Table V. Policy value estimates on Random logs (campaign=all).

ISSN: 3066-3962

policy IPS SNIPS DR

Uniform 0.0038 0.0038 0.00381276
BTS(emp) 0.00503537 0.00525307 0.00522664
Softmax(0.05) 0.00380989 0.00381085 0.00382359

Table VI. Proxy ranking metrics computed with q as relevance (campaign=all).

policy NDCG@3 MRR@3
Uniform 0.999806 1
BTS(emp) 1 1
Softmax(0.05) 1 1

D. CTR-Diversity Trade-off (Pareto)

Figure 4 and Table VII report the CTR—diversity trade-
off of the sequential diversity-aware policy as a function
of A € {0, 0.25, 0.5, 0.75, 1.0}. For each A, we compute
(i) model-predicted CTR, defined as the expected click

probability under the fitted reward model q for the
generated top-3 slates, and (i1) diversity, defined as the
expected number of unique KMeans clusters in the top-
3 slates. Both quantities are computed using the same
OBD contexts and fixed random seeds, so the reported
Pareto points are reproducible.

CTR-Diversity Pareto (DM-based simulation, campaign=all)

=0

0.01348 -

0.01346 -

0.01344 -

0.01342 -

0.01340 A

Predicted slate CTR (sum of slot CTRs)

0.01338 -

T T
2.640 2.645

T T T
2.650 2.655 2.660

Diversity (expected #unique clusters in top-3)

Fig. 4. Predicted CTR-diversity Pareto curve (campaign=all).

Table VII. Pareto points for varying diversity penalty A.
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lambda model pred ctr diversity
0 0.0134826 2.63817
0.25 0.0134063 2.65825
0.5 0.013382 2.66117
0.75 0.0133809 2.66067
1 0.0133809 2.66042

E. Semi-synthetic Bias—Variance Curves

To quantify estimator variability under known ground
truth, we simulate rewards from the fitted environment
model q over real OBD covariates and compute the
oracle value V(z _e). Figure 3 and Table IX report the
mean and standard deviation across sample sizes. For

IPS, the standard deviation decreases from 0.00374 at
m=200 to 0.000895 at m=5000, and SNIPS/DR follow
the same scale (Table IX). In this semi-synthetic
configuration, all three estimators are driven by the
same importance-weight distribution induced by the
logger—target pair, which yields similar variance across
IPS/SNIPS/DR.

Variance vs sample size (semi-synthetic, OBD covariates)

4x1073

3x 1073

2x10734

Estimator std-dev (log)

103 A

IPS
SNIPS
—e— DR

——

103

Logged sample size m (log)

Fig. 3. Variance vs sample size in a semi-synthetic OPE benchmark (OBD covariates).
Table IX. Semi-synthetic bias and variance summary across sample sizes.

m estimator mean std bias
200 IPS 0.00360274 0.00374124 -0.000479277
200 SNIPS 0.003603 0.0037416 -0.000479013
200 DR 0.00360336 0.00373813 -0.000478655
500 IPS 0.00381328 0.00280331 -0.000268733
500 SNIPS 0.00381326 0.00280281 -0.00026875
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500 DR 0.00381375 0.0028034 -0.000268261
1000 IPS 0.00400148 0.00178925 -8.05356e-05
1000 SNIPS 0.00400128 0.00178887 -8.07282e-05
1000 DR 0.00400319 0.00179066 -7.88213e-05
2000 IPS 0.00416372 0.00134929 8.17106e-05

2000 SNIPS 0.00416384 0.00134957 8.18286e-05

2000 DR 0.00416326 0.00134662 8.12437e-05

5000 IPS 0.0038979 0.000894772 -0.000184114
5000 SNIPS 0.00389801 0.000894801 -0.000184007
5000 DR 0.00389672 0.000894489 -0.000185294

F. Reward-model Calibration

DR relies on the reward model . Figure 6 reports a
decile-based reliability diagram of q on Random logs
(campaign=all), constructed by binning predictions into

10 equal-sized bins and plotting the empirical click rate
in each bin. This calibration diagnostic is reported
alongside DR results because q directly enters both the
DR correction term and the model-derived policy
construction.

Calibration on OBD (Random policy, campaign=all)

0.007 A
0.006 -
0.005 A

0.004

el

//

0.003 A

Observed CTR (mean in bin)

0.002

0.001 A

0.002 0.003

0.004

0.005 0.006 0.007

Predicted CTR (mean in bin)

Fig. 6. Calibration of the logistic reward model § (campaign=all, Random logs).

VI. Conclusion

We performed a reproducible experimental study of
counterfactual evaluation for multi-position
recommendation using the Open Bandit Dataset (OBD)
public sample. Across the reported -cross-policy
evaluations, estimator behavior is driven by support
overlap and the heavy tail of importance weights
(Tables III-1V, Fig. 2). SNIPS and DR provide more

stable estimates than IPS under heavy-tailed weights,
and propensity clipping exposes a clear bias—variance
trade-off (Table VIII, Fig. 5). We also compare
stochastic rankers offline and report a reproducible
CTR—diversity Pareto analysis defined by the fitted
reward model q and a cluster-based diversity metric
(Table VII, Fig. 4). This paper focuses on per-position
estimators and model-based slate construction; full-slate
estimators, cross-fitting, and additional delivery
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constraints are outside the scope of the reported
experiments.
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Appendix: Reproducibility Notes

All numeric results (Tables I-IX and Figs. 1-6) were
generated from the public Open Bandit Dataset (OBD)
sample distributed with the Open Bandit Pipeline, using
campaigns {all, men, women} and logging policies
{random, bts}. We fix random seed=0 for Monte Carlo
marginalization in the diversity-aware policy and for
semi-synthetic simulations. Figures are saved as PNG
(200 dpi) and tables are exported as CSV and embedded
into this document.
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