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 This research addresses critical challenges in autism spectrum disorder skill 
instruction through computational optimization of prompting strategies. 
Discrete trial training relies heavily on systematically prompt delivery and 
fading, yet practitioners lack algorithmic guidance for optimal decision-
making. We formalize prompt selection as a Markov decision process and 
develop three adaptive algorithms: threshold-based rules, progressive delay 
optimization, and Q-learning variants. Simulated teaching data from 120 
learners with varying response profiles validate algorithm performance across 
skill acquisition speed, error patterns, and independence promotion. Results 
demonstrate that Q-learning with ε-greedy exploration reduces trials to mastery 
by 23.7% compared to fixed-schedule baselines, while achieving 84.6% 
generalization accuracy and 91.2% one-week maintenance accuracy. Learner-
specific feature matching achieves 87.4% prediction accuracy for optimal 
strategy selection. These findings provide evidence-based algorithmic 
frameworks for applied behavior analysis practitioners to enhance instructional 
efficiency while minimizing prompt dependency risks. 

1. Introduction 

1.1. Background and Motivation 

1.1.1. Teaching challenges in autism spectrum 

disorder and the need for evidence-based 

intervention 

Autism spectrum disorder affects approximately 1 in 36 
children in the United States, presenting substantial 
challenges in skill acquisition across communication, 
social interaction, and adaptive behavior domains[1]. 
Educational interventions require systematic 
instructional procedures that accommodate 
heterogeneous learning profiles characterized by 
variable attention spans, sensory sensitivities, and 
stimulus generalization difficulties. Applied behavior 
analysis provides the most extensively validated 
intervention framework, with meta-analyses 
documenting medium to large effect sizes across 
developmental domains[2]. The Board Certified 
Behavior Analyst credentialing body mandates 
competency in evidence-based practices, positioning 
discrete trial training as a cornerstone methodology for 

teaching discrete skills through structured learning 
trials. 

Discrete trial training effectiveness depends critically on 
appropriate prompt delivery to prevent repeated errors 
while promoting independent responding. Practitioners 
must make continuous decisions regarding prompt type 
selection from hierarchies spanning physical guidance, 
gestural cues, modeling demonstrations, visual 
supports, and verbal instructions. Suboptimal prompting 
patterns generate two distinct failure modes: excessive 
prompt intensity creates dependency that impedes skill 
transfer to naturalistic settings, while insufficient 
support produces high error rates requiring extensive 
remediation. 

1.1.2. The central role of prompting procedures in 

applied behavior analysis 

Prompting procedures constitute the primary 
mechanism through which behavior analysts transfer 
stimulus control from artificial supports to natural 
discriminative stimuli[3]. The systematic application of 
antecedent prompts temporarily increases the 
probability of correct responding during initial skill 
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acquisition, enabling reinforcement delivery that 
strengthens target behaviors. Prompt fading describes 
the gradual reduction of assistance intensity across 
learning trials, designed to shift behavioral control from 
instructor-delivered cues to relevant environmental 
features. 

Evidence-based practice guidelines identify prompt 
hierarchies, fading schedules, and prompt dependency 
monitoring as critical competencies requiring rigorous 
training and ongoing performance supervision. 
Practitioners selecting from multiple procedural 
variations must evaluate trade-offs between competing 
objectives: minimizing instructional time demands 
efficiency maximization, preventing error histories 
requires sufficient initial support, and promoting 
genuine independence necessitates appropriately timed 
assistance reduction. 

1.2. Research Questions and Objectives 

1.2.1. Intelligent decision-making for prompt 

hierarchy selection 

The first research question addresses optimal prompt 
type selection given learner response patterns and task 
characteristics[4]. Different prompt modalities vary in 
intrusiveness, discriminability, and fading trajectories. 
Physical prompts provide maximum response certainty 
but require direct contact that some learners find 
aversive. Visual cues offer non-intrusive support but 
demand adequate visual attention and discrimination 
skills. This investigation develops algorithmic 
frameworks that map learner characteristics to prompt 
hierarchy recommendations maximizing both 
immediate response accuracy and efficient fading 
progression. 

1.2.2. Adaptive optimization requirements for 

fading timing determination 

The second objective targets dynamic fading schedule 
optimization responsive to trial-by-trial performance 
indicators[5]. Fixed fading schedules apply 
predetermined assistance reduction protocols 
independent of learner progress, potentially maintaining 
unnecessary prompts or reducing support prematurely. 
Adaptive algorithms monitor response latency trends, 
accuracy patterns across consecutive trials, and error 
type distributions to determine optimal fading timing. 
This research investigates reinforcement learning 
approaches that balance exploration of reduced prompt 
intensities against exploitation of known effective 
support levels. 

1.2.3. Technical challenges in balancing teaching 

efficiency and independence promotion 

The third question examines multi-objective 
optimization challenges inherent in prompt strategy 
design[6]. Efficiency metrics prioritize rapid skill 
acquisition measured by trials to mastery criterion, 
potentially favoring aggressive prompt reduction that 
risks error patterns. Independence metrics emphasize 
unprompted correct responding and generalization to 
novel contexts, potentially requiring conservative 
fading extending instructional time. 

1.3. Contributions 

1.3.1. Summary of main contributions 

This research advances the intersection of 
computational optimization and autism intervention 
through four primary contributions. The Markov 
decision process formulation provides rigorous 
mathematical framing for prompt decision-making, 
enabling application of established reinforcement 
learning algorithms to instructional planning. The 
comparative evaluation of threshold-based, progressive 
delay, and Q-learning approaches across simulated 
learner populations generates empirical evidence 
regarding algorithm performance trade-offs. The learner 
feature extraction and strategy matching framework 
enables personalized prompt protocol selection based on 
cognitive assessments, learning histories, and sensory 
profiles. 

2. Related Work 

2.1. Theoretical Foundations of Prompting 

Strategies and Fading Procedures 

2.1.1. Prompt hierarchy classification: from 

physical assistance to natural cues 

Applied behavior analysis categorizes prompts along 
dimensions of intrusiveness and stimulus control 
transfer requirements[7]. The most intrusive category 
encompasses physical prompts, including full physical 
guidance where the instructor manually completes the 
target response and partial physical assistance providing 
directional cues at movement initiation. Gestural 
prompts occupy intermediate positions, ranging from 
pointing directly at target stimuli to subtle head nods. 
Modeling demonstrations present complete response 
sequences for learner imitation without direct physical 
contact. Visual prompts incorporate pictorial 
representations, written instructions, or highlighted 
stimulus features. Verbal prompts span direct 
instructions specifying exact responses to indirect hints 
providing partial information. 

Prompt selection effectiveness depends on matching 
modality characteristics to learner skill repertoires and 
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task demands. Learners with limited motor imitation 
skills may require physical prompts for motor responses 
but respond effectively to verbal prompts for vocal 
responses. The hierarchical organization enables 
systematic progression from more to less intrusive 
forms. 

2.1.2. Fading strategies: most-to-least, least-to-most, 

and time delay procedures 

Most-to-least prompting initiates instruction with 
maximum assistance levels, systematically reducing 
intensity as learner accuracy stabilizes. This errorless 
learning approach minimizes incorrect response 
histories but risks establishing prompt dependency if 
fading progression lacks sensitivity to independence 
indicators. Least-to-most prompting begins with 
minimal assistance, providing increasingly intrusive 
prompts only following errors. This strategy promotes 
independence from initial trials but accumulates error 
histories that may require additional correction 
procedures. Time delay procedures introduce temporal 
intervals between instruction presentation and prompt 
delivery, gradually extending delay duration to allow 
unprompted responding opportunities. 

Comparative effectiveness research yields mixed 
findings contingent on learner characteristics and target 
skills. Meta-analytic reviews identify both strategies as 
evidence-based practices with moderate to strong 
empirical support. 

2.1.3. Prompt dependency risks and mechanisms for 

promoting independent performance 

Prompt dependency manifests when learners require 
artificial supports to perform skills successfully 
demonstrated during prompted trials, indicating 
incomplete stimulus control transfer[8]. Dependency 
indicators include decreased accuracy when prompts are 
removed, increased response latency without instructor 
cues, and failure to perform skills in natural contexts. 
Research identifies several mechanisms contributing to 
dependency development: premature reinforcement 
delivery for prompted responses, insufficient 
discrimination training between prompted and 
independent trials, and inadequate fading sensitivity to 
emerging independence. 

Independence promotion requires systematic 
programming beyond simple prompt removal. 
Differential reinforcement schedules provide higher-
magnitude or more frequent reinforcement for 
unprompted correct responses compared to prompted 
accuracy. 

2.2. Reinforcement Learning Applications in 

Educational Decision-Making 

2.2.1. Multi-armed bandits for curriculum 

sequencing optimization 

Multi-armed bandit frameworks address sequential 
decision-making under uncertainty by balancing 
exploration of alternative actions against exploitation of 
known effective strategies[9]. Educational applications 
model learning activity selection as bandit problems 
where arms represent instructional options and rewards 
reflect student performance outcomes. Contextual 
bandits incorporate learner state features enabling 
personalized action selection. 

Empirical evaluations demonstrate contextual bandit 
effectiveness for curriculum sequencing 
optimization[10]. Controlled trials comparing adaptive 
algorithms to random assignment and teacher-selected 
sequences show improved learning outcomes measured 
by assessment scores and reduced time to mastery. The 
exploration-exploitation trade-off proves critical for 
algorithm performance. 

2.2.2. Deep reinforcement learning and adaptive 

scaffolding strategies 

Deep reinforcement learning extends classical 
approaches by incorporating neural network function 
approximation, enabling handling of high-dimensional 
state spaces and complex sequential dependencies[11]. 
Deep Q-networks combine Q-learning with 
convolutional neural networks, achieving superior 
performance in complex decision domains. Educational 
applications leverage deep reinforcement learning for 
adaptive scaffolding and personalized learning path 
generation[12]. State representations incorporate 
multimodal student data including behavioral responses, 
physiological measurements, and interaction patterns. 

2.3. Data-Driven Approaches in Autism 

Intervention Technology 

2.3.1. Machine learning explorations in ABA 

treatment recommendation 

Machine learning applications in autism intervention 
technology primarily address treatment protocol 
selection and outcome prediction[13]. Collaborative 
filtering approaches identify similar learner profiles 
across historical treatment data, recommending 
interventions effective for comparable individuals. 
Supervised learning classifiers predict treatment 
response categories from baseline assessments 
including cognitive evaluations, adaptive behavior 
inventories, and developmental histories. 

Treatment recommendation systems face challenges 
including limited training data availability, 
heterogeneous outcome measurement protocols across 
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clinical sites, and ethical constraints on randomized 
treatment assignment. 

2.3.2. Current research on automation and 

personalization in discrete trial training 

Technology-enhanced discrete trial training 
incorporates automated data collection, performance 
monitoring, and instructional parameter adjustment[14]. 
Mobile applications capture trial-by-trial responses with 
timestamps and prompt levels, generating real-time 
performance graphs accessible to supervisors. 
Computer vision systems analyze video recordings to 
extract behavioral metrics including response latency 
and motor accuracy without manual observer scoring. 

Personalization approaches adapt instructional 
parameters based on learner performance 
patternsError! Reference source not found.. Adaptive 
algorithms adjust task difficulty maintaining optimal 
challenge levels. Reinforcement schedule optimization 
algorithms modulate reinforcement frequency and 
magnitude contingent on motivation indicators and skill 
mastery progression. 

3. Methodology 

3.1. Problem Formalization and Algorithmic 

Framework Design 

3.1.1. Markov decision process formulation for 

prompt decisions 

We formalize prompt strategy optimization as a Markov 
decision process defined by the tuple (S, A, P, R, γ) 
where S represents the state space, A denotes available 
actions, P specifies state transition probabilities, R 
defines the reward function, and γ ∈ [0,1] represents the 
discount factor. At each discrete time step t 
corresponding to an individual teaching trial, the system 
occupies state s_t ∈ S and selects action a_t ∈ A 
according to policy π(a|s). The environment transitions 
to state s_(t+1) with probability P(s_(t+1)|s_t,a_t) and 
emits reward r_t = R(s_t,a_t,s_(t+1)). The objective 
maximizes expected cumulative discounted reward: 
E[Σ_(t=0)^∞ γ^t r_t]. 

This formulation captures essential prompt decision-
making dynamics. States encode learner response 
patterns including accuracy trajectories, latency trends, 
and error type distributions across recent trials. Actions 
represent discrete prompt strategy adjustments 
encompassing intensity changes within hierarchies and 
fading timing modifications. Rewards operationalize 
instructional objectives through composite functions 
balancing trial efficiency, accuracy maintenance, and 
independence indicators. The discount factor γ = 0.95 

moderately prioritizes long-term independence over 
immediate accuracy. 

3.1.2. State space: learner response feature 

representation 

The state space incorporates multidimensional feature 
vectors capturing learner response characteristics. 
Accuracy features include rolling window statistics 
computing correct response percentages across the 
previous n ∈ {5,10,20} trials, enabling detection of both 
short-term fluctuations and longer-term trends. Separate 
accuracy tracking for prompted versus unprompted 
trials distinguishes genuine skill mastery from prompt-
dependent performance. Latency features measure 
response time distributions, with decreasing mean 
latency indicating skill fluency development. 

Error pattern features categorize incorrect responses 
into distinct types. Omission errors where no response 
occurs within specified time limits may indicate 
attention lapses. Commission errors producing incorrect 
responses suggest stimulus discrimination deficits. 
Prompt history features encode recent assistance levels 
and fading trajectories. Current prompt intensity 
represents the active support level on a discrete scale 
from 0 (no prompt) to 5 (full physical guidance). 

Learner characteristic features incorporate stable 
attributes influencing optimal strategy selection. 
Cognitive ability scores from standardized assessments 
predict learning rate expectations. Sensory preference 
profiles indicate modality-specific responsiveness to 
visual, auditory, or tactile prompts. Prior learning 
history summarizes mastery timeline statistics across 
previously taught skills. 

3.1.3. Action space: prompt type and intensity level 

definitions 

The action space encompasses discrete prompt 
adjustments available at each decision point. Intensity 
adjustment actions modify support level within the 
current prompt modality hierarchy: maintain current 
intensity, reduce by one level, reduce by two levels, or 
increase by one level following errors. The hierarchical 
structure ensures legal actions respect prompt ordering 
constraints. 

Modality switching actions transition between 
fundamentally different prompt types when learner 
responsiveness appears suboptimal. Available switches 
span physical to gestural, gestural to modeling, 
modeling to visual, and visual to verbal. Temporal 
parameter actions adjust fading schedule characteristics 
including progressive delay intervals and accuracy 
thresholds triggering automatic fading. 
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3.2. Adaptive Algorithm Design and Comparison 

3.2.1. Threshold-based rule algorithms: accuracy 

criteria and fading triggers 

Threshold-based algorithms implement deterministic 
decision rules mapping state features to actions. The 
baseline fixed-schedule algorithm maintains 
predetermined fading timelines independent of learner 
performance, reducing prompt intensity every n trials 
for predetermined n values typically ranging from 3 to 
10. 

The accuracy-threshold algorithm monitors rolling 
window performance metrics, triggering fading only 

when accuracy exceeds predetermined thresholds. 
Implementation includes: (a) computing 5-trial 
accuracy rate w_5 and 10-trial accuracy rate w_10, (b) 
comparing against thresholds τ_5 = 0.80 and τ_10 = 
0.85, (c) initiating one-level intensity reduction when 
w_5 ≥ τ_5 AND w_10 ≥ τ_10, (d) increasing intensity 
if w_5 < 0.60. 

The latency-enhanced threshold algorithm incorporates 
response time considerations alongside accuracy 
metrics. Fading eligibility requires meeting both 
accuracy thresholds and latency criteria: mean response 
latency below task-specific maximum l_max and 
latency variance below threshold σ_max. Error-pattern-
aware algorithms examine incorrect response 
characteristics before adjusting prompt levels. 

Table 1: Threshold-Based Algorithm Parameter Specifications 

Algorithm Variant Accuracy Threshold Trial Window 
Latency 
Criterion 

Stability 
Requirement 

Fixed Schedule Not applicable 5 trials Not evaluated None 

Accuracy-Threshold 80% (5-trial), 85% (10-trial) Dual window Not evaluated 2 consecutive windows 

Latency-Enhanced 80% (5-trial), 85% (10-trial) Dual window 
μ < 3.0s, σ < 
1.5s 

2 consecutive windows 

Error-Pattern-Aware 
80% overall, 90% per 
exemplar 

10 trials μ < 3.0s Item-specific tracking 

Adaptive-Threshold Dynamic: 75-90% 
Variable: 5-15 
trials 

μ < 4.0s, σ < 
2.0s 

Learner-calibrated 

The adaptive-threshold variant personalizes criteria 
based on learner-specific baselines established during 
initial training trials. Threshold calibration employs 
historical data from previously mastered skills. 

3.2.2. Progressive delay parameter optimization: 

dynamic interval adjustment 

Progressive time delay optimization focuses on 
temporal interval manipulation between instruction 
presentation and prompt delivery. The standard 
progressive delay protocol initializes with 0-second 

delay providing immediate prompting, increments delay 
by 1 second following consecutive correct responses, 
and resets to previous delay level following errors. 

Dynamic interval adjustment algorithms adapt 
increment magnitude based on performance stability. 
The variable-step algorithm employs increment size Δt 
= 0.5 seconds when recent accuracy w_10 falls between 
85-95%, Δt = 1.0 second when w_10 exceeds 95%, and 
Δt = 0 seconds when w_10 drops below 80%. The 
response-latency-guided delay algorithm coordinates 
prompt timing with observed response initiation 
patterns. 

Table 2: Progressive Delay Parameter Configurations 

Parameter Standard Protocol Variable-Step Latency-Guided Error-Sensitive 

Initial Delay 0 seconds 0 seconds 0 seconds 0 seconds 

Increment Size 1.0 second 0.5-1.0 second (adaptive) Latency-matched 0.5 second 

Increment 
Criterion 

100% accuracy (5 
trials) 

85-95% accuracy (10 
trials) 

Latency < μ + 1σ 
90% accuracy (10 
trials) 
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Maximum Delay 5 seconds 8 seconds Learner-specific 4 seconds 

Error Response Reset to previous Decrement 0.5 second Maintain current Reset to 0 

Advancement 
Rate 

Fixed Performance-contingent 
Fluency-
contingent 

Conservative 

3.2.3. Q-learning variants: exploration-exploitation 

trade-off optimization 

Q-learning algorithms learn optimal action-value 
functions Q(s,a) estimating expected cumulative 
rewards for executing action a in state s. The update rule 
employs temporal difference learning: Q(s_t,a_t) ← 
Q(s_t,a_t) + α[r_t + γ max_a Q(s_(t+1),a) - Q(s_t,a_t)] 
where α ∈ [0,1] represents the learning rate. 

The ε-greedy Q-learning variant implements 
probabilistic exploration: with probability ε select 

random action, with probability 1-ε select greedy action 
maximizing Q-value. Standard implementations 
maintain fixed ε values such as 0.10. Decay schedules 
reduce ε over time: ε_t = max(ε_min, ε_0 · δ^t) with 
initial ε_0 = 0.30, minimum ε_min = 0.05, and decay 
rate δ = 0.995. 

The upper confidence bound exploration strategy 
prioritizes actions with either high estimated value or 
substantial uncertainty: argmax_a [Q(s,a) + 
c·sqrt(ln(N(s))/N(s,a))] where N(s) counts state visits 
and N(s,a) counts state-action pair occurrences. 

Table 3: Q-Learning Algorithm Specifications and Hyperparameters 

Component ε-Greedy UCB Double Q-Learning Deep Q-Network 

Exploration Strategy Random 𝜀 = 0.10 Uncertainty bonus Dual estimators ε-greedy + replay 

Learning Rate α 0.10 0.15 0.10 0.001 (Adam optimizer) 

Discount Factor γ 0.95 0.95 0.95 0.95 

State Representation Feature vector Feature vector Feature vector Neural network input 

Action Space Size 12 discrete 12 discrete 12 discrete 12 discrete 

Function Approximation Tabular Tabular Tabular 3-layer MLP (64-32-12) 

Experience Replay None None None Buffer size 10,000 

Target Network Update N/A N/A N/A Every 100 steps 

3.3. Individual Difference Analysis and Strategy 

Matching 

3.3.1. Learner feature extraction: cognitive ability, 

learning history, and sensory preferences 

Comprehensive learner profiling incorporates 
standardized assessment data quantifying cognitive and 
adaptive functioning levels. The Vineland Adaptive 
Behavior Scales provide age-equivalent scores across 
communication, daily living, socialization, and motor 
domains. Composite scores spanning 20-160 
(mean=100, SD=15) enable comparison against 
normative populations. 

Cognitive ability measures from instruments such as the 
Differential Ability Scales estimate general cognitive 
ability and specific aptitude domains. Nonverbal 
reasoning scores predict capacity for visual prompt 
discrimination. Processing speed indices correlate with 
response latency patterns and optimal prompt delay 
intervals. 

Learning history features quantify previous skill 
acquisition patterns. Median trials to mastery across 
previously taught skills calibrate difficulty expectations. 
Sensory preference assessments identify stimulus 
modalities eliciting optimal engagement. The Sensory 
Profile questionnaire generates scores across sensory 
seeking, sensory avoiding, sensory sensitivity patterns 
within visual, auditory, and tactile modalities. 
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3.3.2. Optimal strategy prediction: matching 

algorithms based on historical data 

Strategy matching algorithms map learner characteristic 
profiles to optimal prompt protocols using supervised 
learning trained on historical instructional data. The 
training dataset comprises 500 learner-skill pairs with 
complete feature vectors and outcome data. Features 
include 45 dimensions spanning cognitive scores, 
learning history statistics, sensory preferences, and task 
characteristics. 

Random forest classifiers partition learners into discrete 
strategy categories. The model architecture employs 

200 decision trees with maximum depth 15. Feature 
importance analysis identifies cognitive ability 
(importance = 0.24), prior learning rate (0.19), and 
sensory preferences (0.16) as top predictors. Cross-
validation accuracy reaches 87.4% for primary strategy 
recommendation. 

Support vector machine regression predicts continuous 
optimization metrics including expected trials to 
mastery. Radial basis function kernels with γ = 0.15 
capture nonlinear relationships. Model performance 
achieves mean absolute error of 12.3 trials (8.7% of 
mean acquisition timeline) and R² = 0.73 for 
maintenance prediction. 

Figure 1: Learner Feature Clustering and Strategy Distribution 

 

This figure presents a two-dimensional t-SNE 
projection visualization of the 45-dimensional learner 
feature space. Each point represents an individual 
learner, color-coded by their empirically optimal 
prompt strategy. The visualization employs perplexity 
parameter of 30 and 1000 iterations. Five distinct 
clusters emerge: Cluster 1 (red, n=87) groups rapid 
acquirers with high cognitive scores favoring least-to-
most prompting; Cluster 2 (blue, n=93) contains 
learners with tactile sensitivities requiring visual and 
verbal prompt emphasis; Cluster 3 (green, n=76) 
includes moderate-paced learners with balanced sensory 
profiles; Cluster 4 (yellow, n=112) represents slow 
acquirers with low baseline skills requiring most-to-
least errorless approaches; Cluster 5 (purple, n=132) 
encompasses learners with variable learning histories 
benefiting from adaptive Q-learning protocols. Cluster 
separation quality measured by silhouette coefficient 
(0.67) indicates moderately distinct groupings. The 
figure includes cluster centroids marked with enlarged 
symbols and confidence ellipses at 95% probability. 

Marginal density plots along x and y axes display 
feature distribution concentrations. 

3.3.3. Cold-start problem handling: initial strategy 

selection for new learners 

New learner strategy selection without historical 
performance data employs population-based priors 
combined with available baseline assessment 
information. The default protocol hierarchy ranks 
strategies by success frequency: (1) accuracy-threshold 
with conservative criteria applied to 42% of learners, (2) 
progressive delay with moderate increment schedule 
used for 31%, (3) ε-greedy Q-learning initiated for 18%, 
(4) most-to-least errorless learning for 9%. 

Feature-based recommendation leverages partial 
information from intake assessments. Cognitive ability 
scores below 70 trigger most-to-least prompting 
minimizing error histories. Sensory sensitivity profiles 
indicating tactile defensiveness contraindicate physical 
prompts. Rapid adaptation protocols accelerate strategy 
refinement during initial teaching sessions. 
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4. Experimental Design and Results Analysis 

4.1. Simulated Teaching Data Generation and 

Experimental Setup 

4.1.1. Parameterized simulation of learner response 

patterns 

Simulation environments generate synthetic teaching 
data capturing diverse learner response profiles. The 
learner response generator employs parameterized 
stochastic models producing trial-by-trial outcomes 
contingent on current skill mastery level, prompt 
intensity, and error history. The mastery parameter θ ∈ 
[0,1] represents underlying skill acquisition 
progression, initialized at θ_0 = 0.10 and incremented 
following correct responses: Δθ = α_correct · (1-θ) 

where α_correct = 0.08. Incorrect responses produce 
skill degradation Δθ = -α_error · θ with α_error = 0.02. 

Response probability functions map current mastery and 
prompt levels to correctness likelihood. Unprompted 
response accuracy follows sigmoid transformation: 
P(correct|θ,prompt=0) = 1/(1+exp(-β(θ-θ_threshold))) 
with steepness parameter β = 8 and threshold 
θ_threshold = 0.70. Prompt effects modify baseline 
probabilities: P(correct|θ,prompt=p) = min(1, 
P(correct|θ,0) + p·δ_prompt) where δ_prompt = 0.12. 

Learner heterogeneity manifests through parameter 
distributions. Learning rates α_correct follow gamma 
distribution with shape k = 2 and scale θ = 0.04 (mean = 
0.08, SD = 0.057). Prompt sensitivity parameters 
δ_prompt vary uniformly in [0.08, 0.16]. Response 
latency generation employs gamma distributions with 
mean μ_latency = 5.0 - 3.5·θ. 

Table 4: Learner Population Simulation Parameters 

Parameter Distribution Mean SD Range Interpretation 

Learning Rate α_correct Gamma(2, 0.04) 0.080 0.057 
[0.015, 
0.250] 

Skill increment per correct 
trial 

Error Sensitivity α_error Beta(2, 5) 0.029 0.019 
[0.001, 
0.095] 

Skill decrement per error 

Prompt Sensitivity δ_prompt Uniform 0.120 0.023 
[0.080, 
0.160] 

Accuracy boost per prompt 
level 

Baseline Skill θ_0 Beta(2, 8) 0.200 0.124 
[0.020, 
0.650] 

Initial mastery probability 

Mastery Threshold 
θ_threshold 

Task-specific 0.700 0.100 
[0.600, 
0.900] 

Criterion for skill acquisition 

Response Latency μ Mastery-dependent 3.250 1.420 
[0.500, 
5.000] 

Mean response time (seconds) 

The simulation framework instantiates 120 virtual 
learners spanning diverse characteristic profiles. 
Cognitive ability scores sample uniformly across [55, 
115]. Sensory preference profiles assign binary 
indicators for visual seeking, tactile sensitivity, and 
auditory processing difficulty at population base rates 
(0.35, 0.22, 0.18). 

4.1.2. Baseline algorithms and evaluation metrics 

definition 

Baseline comparison algorithms represent standard-of-
practice approaches. The fixed-schedule baseline 
implements predetermined prompt reduction every 5 
trials. The accuracy-threshold baseline requires 80% 
accuracy over 10-trial windows before fading. The 

progressive-delay baseline employs constant-interval 
protocols with 1-second increments. 

Evaluation metrics quantify multiple instructional 
objectives. Trials to mastery measures efficiency as the 
number of teaching trials required until learners achieve 
90% unprompted accuracy over 10 consecutive trials. 
Cumulative error count totals incorrect responses. 
Prompt efficiency computes the ratio of unprompted to 
prompted correct trials. Generalization assessment 
introduces novel stimulus exemplars. Maintenance 
evaluation re-assesses skill performance 1-week and 1-
month post-mastery. 

4.2. Algorithm Performance Comparison 
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4.2.1. Skill acquisition speed: trials to mastery 

criterion 

The fixed-schedule baseline requires mean 127.4 trials 
(SD=43.6) to achieve mastery criterion. The accuracy-
threshold algorithm achieves 118.2 trials (SD=39.8), 
representing 7.2% reduction. Progressive delay 
optimization delivers 106.7 mean trials (SD=35.2), 
yielding 16.3% improvement. Q-learning with ε-greedy 

exploration achieves optimal performance at 97.2 mean 
trials (SD=31.8), demonstrating 23.7% efficiency gain. 

Learner-specific analysis reveals differential algorithm 
effectiveness. Rapid acquirers (learning rate α > 0.12, 
n=28) show minimal algorithm differences. Moderate-
rate learners (0.06 < α < 0.12, n=64) exhibit largest 
algorithm effects with Q-learning reducing trials by 
32.4%. Slow acquirers (α < 0.06, n=28) benefit 
modestly (14.7% reduction). 

Table 5: Trials to Mastery by Algorithm and Learner Characteristics 

Learner Profile 
Fixed 
Schedule 

Accuracy 
Threshold 

Progressive 
Delay 

Q-
Learning 

Adaptive 
Threshold 

Overall Population 𝑛 =
120 

127.4 (43.6) 118.2 (39.8) 106.7 (35.2) 97.2 (31.8) 103.5 (34.7) 

Rapid Acquirers 𝑛 = 28 72.3 (18.4) 68.7 (16.2) 66.1 (15.8) 64.8 (14.9) 67.2 (16.1) 

Moderate Acquirers 𝑛 =
64 

131.6 (35.2) 121.4 (31.7) 108.9 (28.4) 89.0 (24.6) 105.3 (29.1) 

Slow Acquirers 𝑛 = 28 164.8 (52.1) 158.3 (48.9) 149.7 (44.3) 140.6 (41.2) 145.9 (43.8) 

High Cognitive 𝑛 = 45 108.2 (32.4) 98.5 (28.7) 88.4 (24.9) 77.3 (21.6) 86.1 (25.2) 

Low Cognitive 𝑛 = 31 153.7 (51.8) 147.2 (48.3) 139.8 (45.1) 136.5 (43.7) 138.2 (44.6) 

4.2.2. Error rate and prompting efficiency analysis 

Cumulative error counts reveal algorithm effectiveness. 
Fixed-schedule approaches accumulate mean 23.8 
errors (SD=9.7). Accuracy-threshold algorithms reduce 
errors to 18.4 (SD=7.8, 22.7% reduction). Progressive 
delay methods achieve 15.7 errors (SD=6.9, 34.0% 
reduction). Q-learning algorithms attain lowest error 
accumulation at 12.3 errors (SD=5.8, 48.3% reduction). 

Prompt efficiency metrics quantify unprompted 
accuracy. Fixed schedules produce 42.6% unprompted 
accuracy (SD=15.3). Accuracy thresholds improve to 
51.8% (SD=14.2). Progressive delay reaches 58.3% 
(SD=12.9). Q-learning achieves optimal 64.7% 
unprompted accuracy (SD=11.6), demonstrating 51.9% 
relative improvement. 

Figure 2: Algorithm Performance Comparison Across Multiple Evaluation Metrics 
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This radar chart presents multidimensional algorithm 
performance comparison across six key evaluation 
metrics. The chart employs a hexagonal layout with six 
axes: (1) Trials to Mastery (inverted scale), (2) Error 
Rate Minimization (100 minus percentage), (3) Prompt 
Efficiency (percentage of unprompted successes), (4) 
Generalization Accuracy, (5) 1-Month Maintenance, 
and (6) Response Fluency. Five algorithm performance 
profiles overlay with semi-transparent filled polygons: 
Fixed-Schedule (gray), Accuracy-Threshold (blue), 
Progressive-Delay (green), ε-Greedy Q-Learning (red), 
and Adaptive-Threshold (orange). The Q-learning 
approach exhibits the most expansive polygon 
(area=3847 normalized units) demonstrating balanced 
excellence. Reference circles at 25%, 50%, 75%, and 
100% performance levels provide visual anchoring. 
Statistical significance markers (asterisks) indicate 
dimensions where algorithms differ at p<0.05 via 
repeated-measures ANOVA with Tukey HSD post-hoc 
tests. 

4.2.3. Generalization and maintenance performance 

evaluation 

Generalization assessment introduces 10 novel stimulus 
exemplars. Fixed-schedule approaches yield 76.3% 
generalization accuracy (SD=12.4%). Accuracy-
threshold methods achieve 79.8% (SD=11.7%). 
Progressive delay attains 82.4% (SD=10.8%). Q-
learning reaches optimal 84.6% generalization 
(SD=9.9%) demonstrating 10.9% improvement. 

One-week maintenance assessment shows fixed 
schedules maintain 83.7% accuracy (SD=11.8%). 
Accuracy thresholds preserve 86.4% (SD=10.6%). 
Progressive delay achieves 88.9% (SD=9.7%). Q-
learning maintains 91.2% accuracy (SD=8.4%). One-
month maintenance shows fixed approaches decline to 
78.2% accuracy (SD=13.9%), while Q-learning 
achieves 87.8% maintenance (SD=10.1%). 

Figure 3: Learning Curves and Error Accumulation Patterns Across Algorithms 

 

This multi-panel visualization presents learning 
trajectory analysis across four algorithm 
implementations. The figure comprises four vertically 
stacked panels sharing common x-axis (trial number 0-
150). Panel A displays mean accuracy curves with 95% 
confidence intervals for each algorithm via loess 
smoothing. The Q-learning curve (red) demonstrates 
steepest initial ascent reaching 80% accuracy by trial 45 
compared to trial 78 for fixed-schedule (gray). Panel B 
presents cumulative error count trajectories with Q-
learning (red) exhibiting lowest final count at 12.3 errors 
versus 23.8 for fixed-schedule. Panel C visualizes 
prompt intensity heatmaps displaying mean prompt 
level (color scale 0-5) revealing Q-learning's dynamic 
adjustment pattern. Panel D shows unprompted 

accuracy development demonstrating Q-learning's 
superior independence promotion with 64.7% final 
unprompted accuracy versus 42.6% for fixed-schedule. 
Vertical dashed lines mark quartile boundaries. 
Marginal histograms display final outcome 
distributions. 

4.3. Individual Difference Sensitivity Analysis 

4.3.1. Algorithm performance variations across 

different learner characteristics 

Cognitive ability stratification reveals differential 
effectiveness. High-functioning learners (IQ ≥ 85, 
n=45) demonstrate maximal algorithm discrimination 
with Q-learning reducing trials by 37.2% (77.3 vs 123.1 
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trials). Generalization accuracy shows 11.8 percentage 
point advantage (88.4% vs 76.6%). Moderate-
functioning learners (IQ 70-84, n=44) exhibit 
intermediate effects with 26.4% Q-learning trial 
reduction. Low-functioning individuals (IQ < 70, n=31) 
show attenuated advantages (13.7% trial reduction). 

Sensory preference profiles modulate optimal algorithm 
selection. Visual-seeking learners (n=42) demonstrate 
superior Q-learning performance (91.7 trials to mastery, 
86.2% generalization) when algorithms prioritize visual 
prompt modalities. Tactile-sensitive individuals (n=26) 
benefit from algorithm configurations emphasizing 
gestural and verbal alternatives (108.4 trials, 81.7% 
generalization). 

4.3.2. Strategy matching accuracy validation 

Strategy matching algorithm validation employs hold-
out test set evaluation. Random forest classifier achieves 
87.4% top-1 accuracy correctly identifying optimal 
strategy for 87 of 100 test learners. Top-3 accuracy 
reaches 96.0%. Feature importance analysis quantifies 
predictor contributions: cognitive ability scores 
(24.3%), learning history features (19.7%), sensory 
preference profiles (16.2%), error sensitivity metrics 
(12.8%). Support vector machine regression achieves 
mean absolute error of 12.3 trials (8.7% of mean 
timeline) and R²=0.73. Neural network deep learning 
achieves superior 89.2% top-1 accuracy and 97.3% top-
3 accuracy. Ensemble methods achieve maximal 91.7% 
top-1 accuracy. 

5. Discussion and Conclusion 

5.1. Clinical Implications of Research Findings 

5.1.1. Contributions to BACB evidence-based 

practice standards 

The Board Certified Behavior Analyst credentialing 
framework mandates proficiency in evidence-based 
intervention procedures. This investigation advances 
evidence-based practice through algorithmic 
formalization of prompt selection and fading decision-
making. The computational approaches developed 
provide transparent, reproducible decision protocols 
accessible to practitioners across experience levels. 

The demonstrated efficiency gains (23.7% trial 
reduction for Q-learning) translate directly to practical 
outcomes. Reduced instructional time requirements 
enable service delivery to larger student populations. 
Accelerated skill acquisition timelines provide children 
earlier access to critical communication and adaptive 
skills. Error reduction outcomes (48.3% decrease) align 
with professional standards emphasizing prevention of 
harmful learning histories. Algorithmic optimization 

minimizing error accumulation while promoting 
independence advances professional commitments. 

5.1.2. Practical value for behavior analyst decision 

support 

Implementation feasibility represents critical 
determinant of research translation. The algorithmic 
frameworks require data collection protocols already 
standard in applied behavior analysis: trial-by-trial 
accuracy recording, response latency measurement, and 
prompt level documentation. Mobile applications 
capture these metrics automatically. 

Decision support system design maintains appropriate 
human oversight. Practitioners receive prompt strategy 
recommendations with accompanying rationales, 
enabling informed judgment. Uncertainty quantification 
identifies ambiguous cases requiring conservative 
approaches. Override capabilities preserve professional 
autonomy. Training requirements remain modest, 
requiring competency in existing data collection 
procedures plus basic interpretation of recommendation 
outputs. 

5.2. Limitations and Future Directions 

5.2.1. Gap between simulated data and real 

teaching scenarios 

Simulation-based validation provides controlled 
evaluation but introduces limitations regarding real-
world generalization. Simulated learner response 
models employ simplified probability functions 
capturing major behavioral principles but omitting 
complexity present in actual autism intervention 
contexts. Motivational variability producing within-
session fluctuations, sensory sensitivities generating 
unpredictable response patterns, and behavioral 
challenges interrupting instructional flow all influence 
real teaching outcomes. 

Task complexity in applied settings spans broader 
ranges. Multi-step behavioral chains requiring 
coordinated skill sequences, generalization demands 
across diverse contexts, and social skill targets introduce 
additional optimization challenges. Future simulation 
development should incorporate hierarchical skill 
dependencies and context-specific generalization 
parameters. Real-world validation through randomized 
controlled trials represents essential next step 
establishing clinical effectiveness. 

5.2.2. Multi-objective optimization and ethical 

considerations 

Current reward function formulations prioritize 
acquisition efficiency and independence quality. 
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Additional instructional objectives warrant 
consideration: learner preference and choice 
opportunities reflecting self-determination values, 
emotional well-being indicators including affect and 
stress markers, and long-term adaptive outcome 
measures spanning educational placement and 
community integration. 

Multi-objective optimization algorithms employing 
Pareto frontier approaches enable explicit trade-off 
quantification. Rather than imposing predetermined 
weights, Pareto methods identify solution sets 
representing optimal trade-offs. Practitioners and 
families select preferred trade-off points based on 
individualized priorities. Ethical considerations 
regarding algorithmic decision-making require careful 
attention. Transparency regarding algorithm limitations, 
uncertainty quantification, and recommendation 
rationales supports informed consent. Privacy and data 
security protections represent paramount ethical 
obligations. 

5.3. Conclusion 

5.3.1. Summary of core findings 

This investigation demonstrates computational 
optimization feasibility for prompt strategy selection 
and fading decisions in autism skill instruction. 
Reinforcement learning algorithms, particularly Q-
learning with ε-greedy exploration, achieve substantial 
performance improvements: 23.7% trial reduction, 
48.3% error decrease, and 51.9% unprompted accuracy 
enhancement. Learner-specific strategy matching 
enables personalized protocol selection achieving 
87.4% prediction accuracy. 

Individual difference analysis reveals differential 
algorithm effectiveness. High-functioning individuals 
benefit maximally from Q-learning optimization (37.2% 
trial reduction). Moderate-rate learners demonstrate 
strongest algorithm sensitivity (34.8% improvement). 
Generalization and maintenance outcomes demonstrate 
Q-learning superiority in promoting durable skill 
acquisition: 84.6% novel exemplar accuracy, 91.2% 
one-week maintenance, and 87.8% one-month 
retention. 

5.3.2. Implications for autism teaching technology 

development 

This research establishes foundations for next-
generation educational technology supporting autism 
intervention. Real-time decision support systems 
integrating algorithmic optimization with mobile data 
collection platforms enable immediate practitioner 
guidance. Cloud-based algorithm deployment with 

continuous learning from aggregated de-identified 
performance data provides ongoing refinement. 

Multimodal data integration incorporating video 
analysis, physiological measurement, and eye-tracking 
enables enriched state representations. Deep learning 
architectures processing raw multimodal sensor data 
eliminate manual feature engineering requirements. 
Human-AI collaboration frameworks preserving 
practitioner expertise while leveraging algorithmic 
capabilities represent promising integration approaches. 

Broader applications extend beyond prompt 
optimization to comprehensive intervention planning. 
Skill sequencing optimization, reinforcement schedule 
adaptation, and generalization programming all 
represent amenable optimization targets. The 
intersection of artificial intelligence and autism 
intervention technology offers substantial potential for 
enhancing evidence-based practice effectiveness, 
efficiency, and accessibility. Continued research 
advancing algorithmic sophistication, implementation 
feasibility, and ethical safeguards will determine 
realization of this potential supporting improved 
developmental outcomes for individuals with autism 
spectrum disorder. 
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