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Abstract

This research addresses critical challenges in autism spectrum disorder skill
instruction through computational optimization of prompting strategies.
Discrete trial training relies heavily on systematically prompt delivery and
fading, yet practitioners lack algorithmic guidance for optimal decision-
making. We formalize prompt selection as a Markov decision process and
develop three adaptive algorithms: threshold-based rules, progressive delay
optimization, and Q-learning variants. Simulated teaching data from 120
learners with varying response profiles validate algorithm performance across
skill acquisition speed, error patterns, and independence promotion. Results
demonstrate that Q-learning with e-greedy exploration reduces trials to mastery
by 23.7% compared to fixed-schedule baselines, while achieving 84.6%
generalization accuracy and 91.2% one-week maintenance accuracy. Learner-
specific feature matching achieves 87.4% prediction accuracy for optimal
strategy selection. These findings provide evidence-based algorithmic
frameworks for applied behavior analysis practitioners to enhance instructional
efficiency while minimizing prompt dependency risks.

1. Introduction

1.1. Background and Motivation

1.1.1. Teaching challenges in autism spectrum
disorder and the need for evidence-based

intervention

teaching discrete skills through structured learning
trials.

Discrete trial training effectiveness depends critically on
appropriate prompt delivery to prevent repeated errors
while promoting independent responding. Practitioners
must make continuous decisions regarding prompt type
selection from hierarchies spanning physical guidance,
gestural cues, modeling demonstrations, visual
supports, and verbal instructions. Suboptimal prompting

Autism spectrum disorder affects approximately 1 in 36
children in the United States, presenting substantial
challenges in skill acquisition across communication,
social interaction, and adaptive behavior domains[1].

Educational interventions require systematic
instructional procedures that accommodate
heterogeneous learning profiles characterized by

variable attention spans, sensory sensitivities, and
stimulus generalization difficulties. Applied behavior
analysis provides the most extensively validated
intervention framework, with meta-analyses
documenting medium to large effect sizes across
developmental domains[2]. The Board Certified
Behavior Analyst credentialing body mandates
competency in evidence-based practices, positioning
discrete trial training as a cornerstone methodology for

patterns generate two distinct failure modes: excessive
prompt intensity creates dependency that impedes skill
transfer to naturalistic settings, while insufficient
support produces high error rates requiring extensive
remediation.

1.1.2. The central role of prompting procedures in
applied behavior analysis

Prompting procedures constitute the primary
mechanism through which behavior analysts transfer
stimulus control from artificial supports to natural
discriminative stimuli[3]. The systematic application of
antecedent prompts temporarily increases the
probability of correct responding during initial skill

Vol. 6(1), pp. 32-44, January 2026

132]


https://scipublication.com/index.php/JACS
https://scipublication.com
https://scipublication.com/index.php/JACS/index
https://doi.org/10.69987/JACS.2026.60103

Journal of Advanced Computing Systems (JACS)

acquisition, enabling reinforcement delivery that
strengthens target behaviors. Prompt fading describes
the gradual reduction of assistance intensity across
learning trials, designed to shift behavioral control from
instructor-delivered cues to relevant environmental
features.

Evidence-based practice guidelines identify prompt
hierarchies, fading schedules, and prompt dependency
monitoring as critical competencies requiring rigorous
training and ongoing performance supervision.
Practitioners selecting from multiple procedural
variations must evaluate trade-offs between competing
objectives: minimizing instructional time demands
efficiency maximization, preventing error histories
requires sufficient initial support, and promoting
genuine independence necessitates appropriately timed
assistance reduction.

1.2. Research Questions and Objectives

1.2.1. Intelligent decision-making for prompt
hierarchy selection

The first research question addresses optimal prompt
type selection given learner response patterns and task
characteristics[4]. Different prompt modalities vary in
intrusiveness, discriminability, and fading trajectories.
Physical prompts provide maximum response certainty
but require direct contact that some learners find
aversive. Visual cues offer non-intrusive support but
demand adequate visual attention and discrimination
skills. This investigation develops algorithmic
frameworks that map learner characteristics to prompt
hierarchy  recommendations  maximizing  both
immediate response accuracy and efficient fading
progression.

1.2.2. Adaptive optimization requirements for
fading timing determination

The second objective targets dynamic fading schedule
optimization responsive to trial-by-trial performance
indicators[5]. Fixed fading schedules apply
predetermined  assistance  reduction  protocols
independent of learner progress, potentially maintaining
unnecessary prompts or reducing support prematurely.
Adaptive algorithms monitor response latency trends,
accuracy patterns across consecutive trials, and error
type distributions to determine optimal fading timing.
This research investigates reinforcement learning
approaches that balance exploration of reduced prompt
intensities against exploitation of known effective
support levels.

1.2.3. Technical challenges in balancing teaching
efficiency and independence promotion
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The third question examines multi-objective
optimization challenges inherent in prompt strategy
design[6]. Efficiency metrics prioritize rapid skill
acquisition measured by trials to mastery criterion,
potentially favoring aggressive prompt reduction that
risks error patterns. Independence metrics emphasize
unprompted correct responding and generalization to
novel contexts, potentially requiring conservative
fading extending instructional time.

1.3. Contributions

1.3.1. Summary of main contributions

This research advances the intersection of
computational optimization and autism intervention
through four primary contributions. The Markov
decision process formulation provides rigorous
mathematical framing for prompt decision-making,
enabling application of established reinforcement
learning algorithms to instructional planning. The
comparative evaluation of threshold-based, progressive
delay, and Q-learning approaches across simulated
learner populations generates empirical evidence
regarding algorithm performance trade-offs. The learner
feature extraction and strategy matching framework
enables personalized prompt protocol selection based on
cognitive assessments, learning histories, and sensory
profiles.

2. Related Work

2.1. Theoretical Foundations of Prompting
Strategies and Fading Procedures

2.1.1. Prompt hierarchy classification: from
physical assistance to natural cues

Applied behavior analysis categorizes prompts along
dimensions of intrusiveness and stimulus control
transfer requirements[7]. The most intrusive category
encompasses physical prompts, including full physical
guidance where the instructor manually completes the
target response and partial physical assistance providing
directional cues at movement initiation. Gestural
prompts occupy intermediate positions, ranging from
pointing directly at target stimuli to subtle head nods.
Modeling demonstrations present complete response
sequences for learner imitation without direct physical
contact. Visual prompts incorporate pictorial
representations, written instructions, or highlighted
stimulus features. Verbal prompts span direct
instructions specifying exact responses to indirect hints
providing partial information.

Prompt selection effectiveness depends on matching
modality characteristics to learner skill repertoires and
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task demands. Learners with limited motor imitation
skills may require physical prompts for motor responses
but respond effectively to verbal prompts for vocal
responses. The hierarchical organization enables
systematic progression from more to less intrusive
forms.

2.1.2. Fading strategies: most-to-least, least-to-most,
and time delay procedures

Most-to-least prompting initiates instruction with
maximum assistance levels, systematically reducing
intensity as learner accuracy stabilizes. This errorless
learning approach minimizes incorrect response
histories but risks establishing prompt dependency if
fading progression lacks sensitivity to independence
indicators. Least-to-most prompting begins with
minimal assistance, providing increasingly intrusive
prompts only following errors. This strategy promotes
independence from initial trials but accumulates error
histories that may require additional correction
procedures. Time delay procedures introduce temporal
intervals between instruction presentation and prompt
delivery, gradually extending delay duration to allow
unprompted responding opportunities.

Comparative effectiveness research yields mixed
findings contingent on learner characteristics and target
skills. Meta-analytic reviews identify both strategies as
evidence-based practices with moderate to strong
empirical support.

2.1.3. Prompt dependency risks and mechanisms for
promoting independent performance

Prompt dependency manifests when learners require
artificial supports to perform skills successfully
demonstrated during prompted trials, indicating
incomplete stimulus control transfer[8]. Dependency
indicators include decreased accuracy when prompts are
removed, increased response latency without instructor
cues, and failure to perform skills in natural contexts.
Research identifies several mechanisms contributing to
dependency development: premature reinforcement
delivery for prompted responses, insufficient
discrimination training between prompted and
independent trials, and inadequate fading sensitivity to
emerging independence.

Independence  promotion  requires  systematic
programming beyond simple prompt removal.
Differential reinforcement schedules provide higher-
magnitude or more frequent reinforcement for
unprompted correct responses compared to prompted
accuracy.

2.2. Reinforcement Learning Applications in
Educational Decision-Making
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2.2.1. Multi-armed bandits for curriculum
sequencing optimization

Multi-armed bandit frameworks address sequential
decision-making under uncertainty by balancing
exploration of alternative actions against exploitation of
known effective strategies[9]. Educational applications
model learning activity selection as bandit problems
where arms represent instructional options and rewards
reflect student performance outcomes. Contextual
bandits incorporate learner state features enabling
personalized action selection.

Empirical evaluations demonstrate contextual bandit
effectiveness for curriculum sequencing
optimization[10]. Controlled trials comparing adaptive
algorithms to random assignment and teacher-selected
sequences show improved learning outcomes measured
by assessment scores and reduced time to mastery. The
exploration-exploitation trade-off proves critical for
algorithm performance.

2.2.2. Deep reinforcement learning and adaptive
scaffolding strategies

Deep reinforcement learning extends classical
approaches by incorporating neural network function
approximation, enabling handling of high-dimensional
state spaces and complex sequential dependencies[11].
Deep  Q-networks combine  Q-learning  with
convolutional neural networks, achieving superior
performance in complex decision domains. Educational
applications leverage deep reinforcement learning for
adaptive scaffolding and personalized learning path
generation[12]. State representations incorporate
multimodal student data including behavioral responses,
physiological measurements, and interaction patterns.

2.3. Data-Driven Approaches in Autism
Intervention Technology

2.3.1. Machine learning explorations in ABA
treatment recommendation

Machine learning applications in autism intervention
technology primarily address treatment protocol
selection and outcome prediction[13]. Collaborative
filtering approaches identify similar learner profiles
across historical treatment data, recommending
interventions effective for comparable individuals.
Supervised learning classifiers predict treatment
response categories from baseline assessments
including cognitive evaluations, adaptive behavior
inventories, and developmental histories.

Treatment recommendation systems face challenges
including  limited training data  availability,
heterogeneous outcome measurement protocols across
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clinical sites, and ethical constraints on randomized
treatment assignment.

2.3.2. Current research on automation and
personalization in discrete trial training

Technology-enhanced discrete trial training
incorporates automated data collection, performance
monitoring, and instructional parameter adjustment[ 14].
Mobile applications capture trial-by-trial responses with
timestamps and prompt levels, generating real-time
performance graphs accessible to supervisors.
Computer vision systems analyze video recordings to
extract behavioral metrics including response latency
and motor accuracy without manual observer scoring.

Personalization  approaches adapt instructional
parameters based on  learner  performance
patternsError! Reference source not found.. Adaptive
algorithms adjust task difficulty maintaining optimal
challenge levels. Reinforcement schedule optimization
algorithms modulate reinforcement frequency and
magnitude contingent on motivation indicators and skill
mastery progression.

3. Methodology

3.1. Problem Formalization and Algorithmic
Framework Design

3.1.1. Markov decision process formulation for
prompt decisions

We formalize prompt strategy optimization as a Markov
decision process defined by the tuple (S, A, P, R, y)
where S represents the state space, A denotes available
actions, P specifies state transition probabilities, R
defines the reward function, and y € [0,1] represents the
discount factor. At each discrete time step t
corresponding to an individual teaching trial, the system
occupies state s t € S and selects action a t € A
according to policy m(als). The environment transitions
to state s (t+1) with probability P(s (t+1)|s t,a t) and
emits reward r t = R(s t,a t,s (t+1)). The objective
maximizes expected cumulative discounted reward:
E[Z (t=0)"0 y"tr t].

This formulation captures essential prompt decision-
making dynamics. States encode learner response
patterns including accuracy trajectories, latency trends,
and error type distributions across recent trials. Actions
represent discrete prompt strategy adjustments
encompassing intensity changes within hierarchies and
fading timing modifications. Rewards operationalize
instructional objectives through composite functions
balancing trial efficiency, accuracy maintenance, and
independence indicators. The discount factor y = 0.95
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moderately prioritizes long-term independence over
immediate accuracy.

3.1.2. State space: learner response feature
representation

The state space incorporates multidimensional feature
vectors capturing learner response characteristics.
Accuracy features include rolling window statistics
computing correct response percentages across the
previous n € {5,10,20} trials, enabling detection of both
short-term fluctuations and longer-term trends. Separate
accuracy tracking for prompted versus unprompted
trials distinguishes genuine skill mastery from prompt-
dependent performance. Latency features measure
response time distributions, with decreasing mean
latency indicating skill fluency development.

Error pattern features categorize incorrect responses
into distinct types. Omission errors where no response
occurs within specified time limits may indicate
attention lapses. Commission errors producing incorrect
responses suggest stimulus discrimination deficits.
Prompt history features encode recent assistance levels
and fading trajectories. Current prompt intensity
represents the active support level on a discrete scale
from 0 (no prompt) to 5 (full physical guidance).

Learner characteristic features incorporate stable
attributes influencing optimal strategy selection.
Cognitive ability scores from standardized assessments
predict learning rate expectations. Sensory preference
profiles indicate modality-specific responsiveness to
visual, auditory, or tactile prompts. Prior learning
history summarizes mastery timeline statistics across
previously taught skills.

3.1.3. Action space: prompt type and intensity level
definitions

The action space encompasses discrete prompt
adjustments available at each decision point. Intensity
adjustment actions modify support level within the
current prompt modality hierarchy: maintain current
intensity, reduce by one level, reduce by two levels, or
increase by one level following errors. The hierarchical
structure ensures legal actions respect prompt ordering
constraints.

Modality switching actions transition between
fundamentally different prompt types when learner
responsiveness appears suboptimal. Available switches
span physical to gestural, gestural to modeling,
modeling to visual, and visual to verbal. Temporal
parameter actions adjust fading schedule characteristics
including progressive delay intervals and accuracy
thresholds triggering automatic fading.
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3.2. Adaptive Algorithm Design and Comparison

3.2.1. Threshold-based rule algorithms: accuracy
criteria and fading triggers

Threshold-based algorithms implement deterministic
decision rules mapping state features to actions. The
baseline fixed-schedule algorithm maintains
predetermined fading timelines independent of learner
performance, reducing prompt intensity every n trials
for predetermined n values typically ranging from 3 to
10.

The accuracy-threshold algorithm monitors rolling
window performance metrics, triggering fading only
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when accuracy exceeds predetermined thresholds.
Implementation includes: (a) computing 5-trial
accuracy rate w 5 and 10-trial accuracy rate w 10, (b)
comparing against thresholds t 5 = 0.80 and T 10 =
0.85, (c) initiating one-level intensity reduction when
w 5>1 5SAND w 10 >t 10, (d) increasing intensity
if w_5<0.60.

The latency-enhanced threshold algorithm incorporates
response time considerations alongside accuracy
metrics. Fading eligibility requires meeting both
accuracy thresholds and latency criteria: mean response
latency below task-specific maximum | max and
latency variance below threshold ¢ max. Error-pattern-
aware algorithms examine incorrect response
characteristics before adjusting prompt levels.

Table 1: Threshold-Based Algorithm Parameter Specifications

Algorithm Variant  Accuracy Threshold Trial Window Latency Stability
Criterion Requirement
Fixed Schedule Not applicable 5 trials Not evaluated None

Accuracy-Threshold  80% (5-trial), 85% (10-trial) Dual window

Latency-Enhanced

80% overall, 90% per

Error-Pattern-Aware
exemplar

Adaptive-Threshold  Dynamic: 75-90%

80% (5-trial), 85% (10-trial) Dual window

Variable: 5-15 pu<4.0s,6<
trials

Not evaluated 2 consecutive windows

n<3.0s,0<

155 2 consecutive windows

pn<3.0s Item-specific tracking

2.0s Learner-calibrated

The adaptive-threshold variant personalizes -criteria
based on learner-specific baselines established during
initial training trials. Threshold calibration employs
historical data from previously mastered skills.

3.2.2. Progressive delay parameter optimization:
dynamic interval adjustment

Progressive time delay optimization focuses on
temporal interval manipulation between instruction
presentation and prompt delivery. The standard
progressive delay protocol initializes with 0-second

delay providing immediate prompting, increments delay
by 1 second following consecutive correct responses,
and resets to previous delay level following errors.

Dynamic interval adjustment algorithms adapt
increment magnitude based on performance stability.
The variable-step algorithm employs increment size At
= (.5 seconds when recent accuracy w_10 falls between
85-95%, At = 1.0 second when w_10 exceeds 95%, and
At = 0 seconds when w 10 drops below 80%. The
response-latency-guided delay algorithm coordinates
prompt timing with observed response initiation
patterns.

Table 2: Progressive Delay Parameter Configurations

Parameter Standard Protocol Variable-Step Latency-Guided Error-Sensitive
Initial Delay 0 seconds 0 seconds 0 seconds 0 seconds

Increment Size 1.0 second 0.5-1.0 second (adaptive) Latency-matched 0.5 second

Increment 100% accuracy (5 85-95% accuracy (10 90% accuracy (10
Criterion trials) trials) Latency < p+lo trials)
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Maximum Delay 5 seconds 8 seconds Learner-specific 4 seconds
Error Response Reset to previous Decrement 0.5 second Maintain current  Reset to 0
Advancement . . Fluency- .
Rate Fixed Performance-contingent contingent Conservative

3.2.3. Q-learning variants: exploration-exploitation
trade-off optimization

Q-learning algorithms learn optimal action-value
functions Q(s,a) estimating expected cumulative
rewards for executing action a in state s. The update rule
employs temporal difference learning: Q(s t,a t) «
Q(s t,a t) t afr t+ymax a Q(s (ttl),a) - Q(s t,a t)]
where o € [0,1] represents the learning rate.

The e-greedy Q-learning variant implements
probabilistic exploration: with probability & select

random action, with probability 1-¢ select greedy action
maximizing Q-value. Standard implementations
maintain fixed € values such as 0.10. Decay schedules
reduce € over time: € t = max(e min, € 0 - 6"t) with
initial € 0 = 0.30, minimum & min = 0.05, and decay
rate 6 = 0.995.

The upper confidence bound exploration strategy
prioritizes actions with either high estimated value or
substantial  uncertainty: argmax a  [Q(s,a) +

c-sqrt(In(N(s))/N(s,a))] where N(s) counts state visits
and N(s,a) counts state-action pair occurrences.

Table 3: Q-Learning Algorithm Specifications and Hyperparameters

Component e-Greedy UCB Double Q-Learning Deep Q-Network
Exploration Strategy Random € = 0.10 Uncertainty bonus Dual estimators g-greedy + replay
Learning Rate a 0.10 0.15 0.10 0.001 (Adam optimizer)
Discount Factor y 0.95 0.95 0.95 0.95

State Representation Feature vector

Action Space Size 12 discrete

Function Approximation Tabular Tabular
Experience Replay None None
Target Network Update  N/A N/A

Feature vector

12 discrete

Feature vector Neural network input

12 discrete 12 discrete

Tabular 3-layer MLP (64-32-12)
None Buffer size 10,000
N/A Every 100 steps

3.3. Individual Difference Analysis and Strategy
Matching

3.3.1. Learner feature extraction: cognitive ability,
learning history, and sensory preferences

Comprehensive  learner  profiling  incorporates
standardized assessment data quantifying cognitive and
adaptive functioning levels. The Vineland Adaptive
Behavior Scales provide age-equivalent scores across
communication, daily living, socialization, and motor
domains. Composite scores spanning 20-160
(mean=100, SD=15) enable comparison against
normative populations.

Cognitive ability measures from instruments such as the
Differential Ability Scales estimate general cognitive
ability and specific aptitude domains. Nonverbal
reasoning scores predict capacity for visual prompt
discrimination. Processing speed indices correlate with
response latency patterns and optimal prompt delay
intervals.

Learning history features quantify previous skill
acquisition patterns. Median trials to mastery across
previously taught skills calibrate difficulty expectations.
Sensory preference assessments identify stimulus
modalities eliciting optimal engagement. The Sensory
Profile questionnaire generates scores across sensory
seeking, sensory avoiding, sensory sensitivity patterns
within visual, auditory, and tactile modalities.
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3.3.2. Optimal strategy prediction: matching
algorithms based on historical data

Strategy matching algorithms map learner characteristic
profiles to optimal prompt protocols using supervised
learning trained on historical instructional data. The
training dataset comprises 500 learner-skill pairs with
complete feature vectors and outcome data. Features
include 45 dimensions spanning cognitive scores,
learning history statistics, sensory preferences, and task
characteristics.

Random forest classifiers partition learners into discrete
strategy categories. The model architecture employs

ISSN: 3066-3962

200 decision trees with maximum depth 15. Feature
importance analysis identifies cognitive ability
(importance = 0.24), prior learning rate (0.19), and
sensory preferences (0.16) as top predictors. Cross-
validation accuracy reaches 87.4% for primary strategy
recommendation.

Support vector machine regression predicts continuous
optimization metrics including expected trials to
mastery. Radial basis function kernels with y = 0.15
capture nonlinear relationships. Model performance
achieves mean absolute error of 12.3 trials (8.7% of
mean acquisition timeline) and R? = 0.73 for
maintenance prediction.

Figure 1: Learner Feature Clustering and Strategy Distribution
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This figure presents a two-dimensional t-SNE
projection visualization of the 45-dimensional learner
feature space. Each point represents an individual
learner, color-coded by their empirically optimal
prompt strategy. The visualization employs perplexity
parameter of 30 and 1000 iterations. Five distinct
clusters emerge: Cluster 1 (red, n=87) groups rapid
acquirers with high cognitive scores favoring least-to-
most prompting; Cluster 2 (blue, n=93) contains
learners with tactile sensitivities requiring visual and
verbal prompt emphasis; Cluster 3 (green, n=76)
includes moderate-paced learners with balanced sensory
profiles; Cluster 4 (yellow, n=112) represents slow
acquirers with low baseline skills requiring most-to-
least errorless approaches; Cluster 5 (purple, n=132)
encompasses learners with variable learning histories
benefiting from adaptive Q-learning protocols. Cluster
separation quality measured by silhouette coefficient
(0.67) indicates moderately distinct groupings. The
figure includes cluster centroids marked with enlarged
symbols and confidence ellipses at 95% probability.
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Marginal density plots along x and y axes display
feature distribution concentrations.

3.3.3. Cold-start problem handling: initial strategy
selection for new learners

New learner strategy selection without historical
performance data employs population-based priors
combined with available baseline assessment
information. The default protocol hierarchy ranks
strategies by success frequency: (1) accuracy-threshold
with conservative criteria applied to 42% of learners, (2)
progressive delay with moderate increment schedule
used for 31%, (3) e-greedy Q-learning initiated for 18%,
(4) most-to-least errorless learning for 9%.

Feature-based recommendation leverages partial
information from intake assessments. Cognitive ability
scores below 70 trigger most-to-least prompting
minimizing error histories. Sensory sensitivity profiles
indicating tactile defensiveness contraindicate physical
prompts. Rapid adaptation protocols accelerate strategy
refinement during initial teaching sessions.
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4. Experimental Design and Results Analysis

4.1. Simulated Teaching Data Generation and
Experimental Setup

4.1.1. Parameterized simulation of learner response
patterns

Simulation environments generate synthetic teaching
data capturing diverse learner response profiles. The
learner response generator employs parameterized
stochastic models producing trial-by-trial outcomes
contingent on current skill mastery level, prompt
intensity, and error history. The mastery parameter 6 €
[0,1] represents underlying skill acquisition
progression, initialized at 6 0 = 0.10 and incremented
following correct responses: A0 = o correct - (1-0)
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where o correct = 0.08. Incorrect responses produce
skill degradation AB = -a_error - 6 with o_error = 0.02.

Response probability functions map current mastery and
prompt levels to correctness likelihood. Unprompted
response accuracy follows sigmoid transformation:
P(correct|0,prompt=0) = 1/(1+exp(-p(6-0 threshold)))
with steepness parameter = 8 and threshold
0 threshold = 0.70. Prompt effects modify baseline
probabilities:  P(correct|0,prompt=p) min(1,
P(correct|8,0) + p-d_prompt) where 6_prompt = 0.12.

Learner heterogeneity manifests through parameter
distributions. Learning rates o correct follow gamma
distribution with shape k =2 and scale 6 = 0.04 (mean =
0.08, SD = 0.057). Prompt sensitivity parameters
O prompt vary uniformly in [0.08, 0.16]. Response
latency generation employs gamma distributions with
mean p_latency =5.0 - 3.5-0.

Table 4: Learner Population Simulation Parameters

Parameter Distribution Mean SD Range Interpretation
Learning Rate a_correct Gamma(2, 0.04) 0.080 0.057 502%105]’ ,[Srlf;il merement  per correct
E oe [0.001, .

rror Sensitivity o_error Beta(2, 5) 0.029 0.019 0.095] Skill decrement per error
Prompt Sensitivity 6 _prompt Uniform 0.120 0.023 50106%?’ itfglﬂacy boost per prompt

: : [0.020, . o

Baseline Skill 6 0 Beta(2, 8) 0.200 0.124 0.650] Initial mastery probability
g{?ﬁ;ﬁg}fml d Threshold Task-specific 0.700 0.100 509%%(])’ Criterion for skill acquisition
R [0.500, .

esponse Latency p Mastery-dependent  3.250 1.420 5.000] Mean response time (seconds)

The simulation framework instantiates 120 virtual progressive-delay baseline employs constant-interval

learners spanning diverse characteristic profiles.
Cognitive ability scores sample uniformly across [55,
115]. Sensory preference profiles assign binary
indicators for visual seeking, tactile sensitivity, and
auditory processing difficulty at population base rates
(0.35,0.22, 0.18).

4.1.2. Baseline algorithms and evaluation metrics
definition

Baseline comparison algorithms represent standard-of-
practice approaches. The fixed-schedule baseline
implements predetermined prompt reduction every 5
trials. The accuracy-threshold baseline requires 80%
accuracy over 10-trial windows before fading. The

protocols with 1-second increments.

Evaluation metrics quantify multiple instructional
objectives. Trials to mastery measures efficiency as the
number of teaching trials required until learners achieve
90% unprompted accuracy over 10 consecutive trials.
Cumulative error count totals incorrect responses.
Prompt efficiency computes the ratio of unprompted to
prompted correct trials. Generalization assessment
introduces novel stimulus exemplars. Maintenance
evaluation re-assesses skill performance 1-week and 1-
month post-mastery.

4.2. Algorithm Performance Comparison
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4.2.1. Skill acquisition speed: trials to mastery
criterion

The fixed-schedule baseline requires mean 127.4 trials
(SD=43.6) to achieve mastery criterion. The accuracy-
threshold algorithm achieves 118.2 trials (SD=39.8),
representing 7.2% reduction. Progressive delay
optimization delivers 106.7 mean trials (SD=35.2),
yielding 16.3% improvement. Q-learning with g-greedy
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exploration achieves optimal performance at 97.2 mean
trials (SD=31.8), demonstrating 23.7% efficiency gain.

Learner-specific analysis reveals differential algorithm
effectiveness. Rapid acquirers (learning rate o > 0.12,
n=28) show minimal algorithm differences. Moderate-
rate learners (0.06 < a < 0.12, n=64) exhibit largest
algorithm effects with Q-learning reducing trials by
32.4%. Slow acquirers (oo < 0.06, n=28) benefit
modestly (14.7% reduction).

Table 5: Trials to Mastery by Algorithm and Learner Characteristics

Fixed Accuracy Progressive Q- Adaptive
Learner Profile Schedule Threshold Delay Learning Threshold
Oyerall Population =177 4 43.6)  118.2(39.8) 106.7 (35.2) 97.2(31.8)  103.5 (34.7)
Rapid Acquirers n = 28 72.3 (18.4)  68.7(16.2) 66.1 (15.8) 64.8 (149) 67.2(16.1)
lg/ffderate ACquIrers n =13y 6357y 121.4(31.7) 108.9 (28.4) 89.0 (24.6)  105.3 (29.1)
Slow Acquirers n = 28 164.8 (52.1)  158.3 (48.9) 149.7 (44.3) 140.6 (41.2) 145.9 (43.8)
High Cognitiven = 45  108.2 (32.4)  98.5(28.7) 88.4 (24.9) 773 (21.6)  86.1 (25.2)
Low Cognitiven = 31 153.7(51.8)  147.2 (48.3) 139.8 (45.1) 136.5 (43.7) 138.2 (44.6)
Prompt efficiency metrics quantify unprompted

4.2.2. Error rate and prompting efficiency analysis

Cumulative error counts reveal algorithm effectiveness.
Fixed-schedule approaches accumulate mean 23.8
errors (SD=9.7). Accuracy-threshold algorithms reduce
errors to 18.4 (SD=7.8, 22.7% reduction). Progressive
delay methods achieve 15.7 errors (SD=6.9, 34.0%
reduction). Q-learning algorithms attain lowest error
accumulation at 12.3 errors (SD=5.8, 48.3% reduction).

accuracy. Fixed schedules produce 42.6% unprompted
accuracy (SD=15.3). Accuracy thresholds improve to
51.8% (SD=14.2). Progressive delay reaches 58.3%
(SD=12.9). Q-learning achieves optimal 64.7%
unprompted accuracy (SD=11.6), demonstrating 51.9%
relative improvement.

Figure 2: Algorithm Performance Comparison Across Multiple Evaluation Metrics
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This radar chart presents multidimensional algorithm
performance comparison across six key evaluation
metrics. The chart employs a hexagonal layout with six
axes: (1) Trials to Mastery (inverted scale), (2) Error
Rate Minimization (100 minus percentage), (3) Prompt
Efficiency (percentage of unprompted successes), (4)
Generalization Accuracy, (5) 1-Month Maintenance,
and (6) Response Fluency. Five algorithm performance
profiles overlay with semi-transparent filled polygons:
Fixed-Schedule (gray), Accuracy-Threshold (blue),
Progressive-Delay (green), e-Greedy Q-Learning (red),
and Adaptive-Threshold (orange). The Q-learning
approach exhibits the most expansive polygon
(area=3847 normalized units) demonstrating balanced
excellence. Reference circles at 25%, 50%, 75%, and
100% performance levels provide visual anchoring.
Statistical significance markers (asterisks) indicate
dimensions where algorithms differ at p<0.05 via
repeated-measures ANOVA with Tukey HSD post-hoc
tests.
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4.2.3. Generalization and maintenance performance
evaluation

Generalization assessment introduces 10 novel stimulus
exemplars. Fixed-schedule approaches yield 76.3%
generalization accuracy (SD=12.4%). Accuracy-
threshold methods achieve 79.8% (SD=11.7%).
Progressive delay attains 82.4% (SD=10.8%). Q-
learning reaches optimal 84.6% generalization
(SD=9.9%) demonstrating 10.9% improvement.

One-week maintenance assessment shows fixed
schedules maintain 83.7% accuracy (SD=11.8%).
Accuracy thresholds preserve 86.4% (SD=10.6%).
Progressive delay achieves 88.9% (SD=9.7%). Q-
learning maintains 91.2% accuracy (SD=8.4%). One-
month maintenance shows fixed approaches decline to
78.2% accuracy (SD=13.9%), while Q-learning
achieves 87.8% maintenance (SD=10.1%).

Figure 3: Learning Curves and Error Accumulation Patterns Across Algorithms
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This multi-panel visualization presents learning
trajectory analysis across four algorithm

implementations. The figure comprises four vertically
stacked panels sharing common x-axis (trial number 0-
150). Panel A displays mean accuracy curves with 95%
confidence intervals for each algorithm via loess
smoothing. The Q-learning curve (red) demonstrates
steepest initial ascent reaching 80% accuracy by trial 45
compared to trial 78 for fixed-schedule (gray). Panel B
presents cumulative error count trajectories with Q-
learning (red) exhibiting lowest final count at 12.3 errors
versus 23.8 for fixed-schedule. Panel C visualizes
prompt intensity heatmaps displaying mean prompt
level (color scale 0-5) revealing Q-learning's dynamic
adjustment pattern. Panel D shows unprompted

Adaptive-Threshald

accuracy development demonstrating Q-learning's
superior independence promotion with 64.7% final
unprompted accuracy versus 42.6% for fixed-schedule.

Vertical dashed lines mark quartile boundaries.
Marginal  histograms  display final  outcome
distributions.

4.3. Individual Difference Sensitivity Analysis

4.3.1. Algorithm performance variations across
different learner characteristics

Cognitive ability stratification reveals differential
effectiveness. High-functioning learners (IQ > &5,
n=45) demonstrate maximal algorithm discrimination
with Q-learning reducing trials by 37.2% (77.3 vs 123.1
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trials). Generalization accuracy shows 11.8 percentage
point advantage (88.4% vs 76.6%). Moderate-
functioning learners (IQ 70-84, n=44) exhibit
intermediate effects with 26.4% Q-learning trial
reduction. Low-functioning individuals (IQ < 70, n=31)
show attenuated advantages (13.7% trial reduction).

Sensory preference profiles modulate optimal algorithm
selection. Visual-seeking learners (n=42) demonstrate
superior Q-learning performance (91.7 trials to mastery,
86.2% generalization) when algorithms prioritize visual
prompt modalities. Tactile-sensitive individuals (n=26)
benefit from algorithm configurations emphasizing
gestural and verbal alternatives (108.4 trials, 81.7%
generalization).

4.3.2. Strategy matching accuracy validation

Strategy matching algorithm validation employs hold-
out test set evaluation. Random forest classifier achieves
87.4% top-1 accuracy correctly identifying optimal
strategy for 87 of 100 test learners. Top-3 accuracy
reaches 96.0%. Feature importance analysis quantifies
predictor contributions: cognitive ability scores
(24.3%), learning history features (19.7%), sensory
preference profiles (16.2%), error sensitivity metrics
(12.8%). Support vector machine regression achieves
mean absolute error of 12.3 trials (8.7% of mean
timeline) and R?=0.73. Neural network deep learning
achieves superior 89.2% top-1 accuracy and 97.3% top-
3 accuracy. Ensemble methods achieve maximal 91.7%
top-1 accuracy.

5. Discussion and Conclusion
5.1. Clinical Implications of Research Findings

5.1.1. Contributions to BACB evidence-based
practice standards

The Board Certified Behavior Analyst credentialing
framework mandates proficiency in evidence-based
intervention procedures. This investigation advances
evidence-based  practice  through  algorithmic
formalization of prompt selection and fading decision-
making. The computational approaches developed
provide transparent, reproducible decision protocols
accessible to practitioners across experience levels.

The demonstrated efficiency gains (23.7% trial
reduction for Q-learning) translate directly to practical
outcomes. Reduced instructional time requirements
enable service delivery to larger student populations.
Accelerated skill acquisition timelines provide children
earlier access to critical communication and adaptive
skills. Error reduction outcomes (48.3% decrease) align
with professional standards emphasizing prevention of
harmful learning histories. Algorithmic optimization
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minimizing error accumulation while promoting
independence advances professional commitments.

5.1.2. Practical value for behavior analyst decision
support

Implementation  feasibility = represents  critical
determinant of research translation. The algorithmic
frameworks require data collection protocols already
standard in applied behavior analysis: trial-by-trial
accuracy recording, response latency measurement, and
prompt level documentation. Mobile applications
capture these metrics automatically.

Decision support system design maintains appropriate
human oversight. Practitioners receive prompt strategy
recommendations with accompanying rationales,
enabling informed judgment. Uncertainty quantification
identifies ambiguous cases requiring conservative
approaches. Override capabilities preserve professional
autonomy. Training requirements remain modest,
requiring competency in existing data collection
procedures plus basic interpretation of recommendation
outputs.

5.2. Limitations and Future Directions

5.2.1. Gap between simulated data and real
teaching scenarios

Simulation-based validation provides controlled
evaluation but introduces limitations regarding real-
world generalization. Simulated learner response
models employ simplified probability functions
capturing major behavioral principles but omitting
complexity present in actual autism intervention
contexts. Motivational variability producing within-
session fluctuations, sensory sensitivities generating
unpredictable response patterns, and behavioral
challenges interrupting instructional flow all influence
real teaching outcomes.

Task complexity in applied settings spans broader
ranges. Multi-step behavioral chains requiring
coordinated skill sequences, generalization demands
across diverse contexts, and social skill targets introduce
additional optimization challenges. Future simulation
development should incorporate hierarchical skill
dependencies and context-specific generalization
parameters. Real-world validation through randomized

controlled trials represents essential next step
establishing clinical effectiveness.

5.2.2. Multi-objective optimization and ethical
considerations

Current reward function formulations prioritize

acquisition efficiency and independence quality.
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Additional instructional objectives warrant
consideration: learner preference and choice
opportunities reflecting self-determination values,

emotional well-being indicators including affect and
stress markers, and long-term adaptive outcome
measures spanning educational placement and
community integration.

Multi-objective optimization algorithms employing
Pareto frontier approaches enable explicit trade-off
quantification. Rather than imposing predetermined
weights, Pareto methods identify solution sets
representing optimal trade-offs. Practitioners and
families select preferred trade-off points based on
individualized priorities. Ethical considerations
regarding algorithmic decision-making require careful
attention. Transparency regarding algorithm limitations,
uncertainty  quantification, and recommendation
rationales supports informed consent. Privacy and data

security protections represent paramount ethical
obligations.

5.3. Conclusion

5.3.1. Summary of core findings

This  investigation  demonstrates computational

optimization feasibility for prompt strategy selection
and fading decisions in autism skill instruction.
Reinforcement learning algorithms, particularly Q-
learning with g-greedy exploration, achieve substantial
performance improvements: 23.7% trial reduction,
48.3% error decrease, and 51.9% unprompted accuracy
enhancement. Learner-specific strategy matching
enables personalized protocol selection achieving
87.4% prediction accuracy.

Individual difference analysis reveals differential
algorithm effectiveness. High-functioning individuals
benefit maximally from Q-learning optimization (37.2%
trial reduction). Moderate-rate learners demonstrate
strongest algorithm sensitivity (34.8% improvement).
Generalization and maintenance outcomes demonstrate
Q-learning superiority in promoting durable skill
acquisition: 84.6% novel exemplar accuracy, 91.2%
one-week maintenance, and 87.8% one-month
retention.

5.3.2. Implications for autism teaching technology
development

This research establishes foundations for next-
generation educational technology supporting autism
intervention. Real-time decision support systems
integrating algorithmic optimization with mobile data
collection platforms enable immediate practitioner
guidance. Cloud-based algorithm deployment with
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continuous learning from aggregated de-identified
performance data provides ongoing refinement.

Multimodal data integration incorporating video
analysis, physiological measurement, and eye-tracking
enables enriched state representations. Deep learning
architectures processing raw multimodal sensor data
eliminate manual feature engineering requirements.
Human-Al collaboration frameworks preserving
practitioner expertise while leveraging algorithmic
capabilities represent promising integration approaches.

Broader applications extend beyond prompt
optimization to comprehensive intervention planning.
Skill sequencing optimization, reinforcement schedule
adaptation, and generalization programming all
represent amenable optimization targets. The
intersection of artificial intelligence and autism
intervention technology offers substantial potential for
enhancing evidence-based practice effectiveness,
efficiency, and accessibility. Continued research
advancing algorithmic sophistication, implementation
feasibility, and ethical safeguards will determine
realization of this potential supporting improved
developmental outcomes for individuals with autism
spectrum disorder.
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