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 This paper investigates risk contagion pathways between U.S. credit and equity 
markets during periods of financial stress through network-based 
methodologies. The study constructs both correlation- and Granger-causality-
based networks to identify transmission channels and quantify contagion 
intensity across market segments from 2008 to 2024. Using daily credit default 
swap (CDS) spreads and equity sector indices, we analyze the evolution of 
network topology during three major stress episodes: the 2008 financial crisis, 
the 2020 COVID-19 market turbulence, and the 2023 regional banking stress. 
Network centrality measures reveal systemically important transmission 
nodes, while time-varying connectivity patterns demonstrate significant 
amplification of cross-market linkages during stress periods. The empirical 
findings indicate that financial sector stocks serve as primary transmission 
channels from credit to equity markets, with contagion strength increasing 
sharply (more than threefold) during crisis periods compared to normal times. 
The research provides quantitative evidence for regulatory frameworks 
focused on systemic risk monitoring and contributes methodological insights 
for identifying vulnerable transmission pathways in interconnected financial 
systems. 

1. Introduction 

1.1. Research Background and Motivation 

The interconnectedness of modern financial markets 
creates complex transmission mechanisms through 
which localized shocks can propagate across asset 
classes and geographic boundaries [1]. The 2008 global 
financial crisis demonstrated how disruptions 
originating in credit markets rapidly transmitted to 
equity markets, triggering widespread asset 
devaluations and institutional failures. Subsequent 
events, including the European sovereign debt crisis and 
the COVID-19 pandemic, have reinforced concerns 
about cross-market contagion dynamics within the U.S. 
financial system [2]. 

Understanding these transmission pathways is a critical 
priority for regulatory authorities responsible for 
maintaining financial stability. The Federal Reserve and 
Financial Stability Oversight Council (FSOC) have 
emphasized the need for analytical frameworks capable 
of identifying systemic vulnerabilities before they 
materialize into full-scale crises [3]. Traditional risk 

assessment approaches that focus on individual 
institutions' solvency provide an incomplete picture of 
system-wide fragilities. Network-based methodologies 
offer complementary perspectives by mapping 
interdependencies and revealing how shocks propagate 
through financial market structures. 

Credit and equity markets maintain particularly strong 
theoretical and empirical linkages, as both reflect 
underlying firm valuations and respond to common 
macroeconomic drivers [4]. Credit default swaps have 
evolved into primary indicators of credit risk 
perceptions, with spreads widening sharply when 
default probabilities increase. Equity markets 
simultaneously process similar information through 
volatility dynamics and cross-sectional return patterns 
[5]. During stress periods, these parallel information 
channels exhibit heightened correlation, suggesting 
intensified risk transmission. The practical implications 
extend beyond academic interest, as identifying 
contagion pathways enables targeted regulatory 
interventions and improves stress-testing protocols. 
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1.2. Research Objectives and Scope 

This investigation addresses three interconnected 
research questions. First, what are the primary pathways 
through which risk transmits from credit markets to 
equity markets during financial stress periods? Second, 
how does the strength and directionality of these 
transmission channels vary across different crisis 
episodes [6]? Third, which market segments function as 
critical nodes in the contagion network, serving as either 
amplifiers or absorbers of systemic shocks? 

The research scope focuses on U.S. market dynamics 
from 2008 to 2024, encompassing multiple distinct 
stress episodes that provide natural experiments for 
analyzing contagion mechanisms. Credit market 
indicators include investment-grade and high-yield 
corporate bond spreads, as well as CDS indices covering 
financial and non-financial sectors [7]. Equity market 
data comprises sector-level indices spanning ten S&P 
industry classifications, enabling granular analysis of 
cross-sectoral transmission patterns. The temporal 
scope captures both gradual deterioration and sudden 
shock events, facilitating comparisons of contagion 
dynamics across different stress manifestations. 

Methodologically, the study employs network 
construction techniques based on both statistical 
correlation and econometric causality testing. This dual 
approach permits assessment of contemporaneous 
associations alongside directional predictive 
relationships [8]. Network topology metrics, including 
degree centrality, betweenness centrality, and clustering 
coefficients, quantify structural properties relevant to 
contagion propagation. Dynamic analysis using rolling-
window estimation reveals the temporal evolution of 
connectivity patterns as market conditions transition 
between normal and stressed states [9]. 

1.3. Paper Structure and Contributions 

The paper proceeds through four additional sections 
following this introduction. Section 2 reviews 
theoretical foundations of financial contagion and 
surveys empirical literature on cross-market 
transmission mechanisms. Section 3 details the data 
collection procedures, network construction 
methodologies, and analytical metrics employed for 
pathway identification and quantification of pathway 
strength [10]. Section 4 presents empirical findings 
regarding network structure evolution, identified 
transmission pathways, and measured contagion 
intensities across different stress periods. Section 5 
concludes with policy implications and directions for 
future research. 

The investigation contributes to the existing literature in 
several respects. Methodologically, it demonstrates how 
combining correlation and causality network 

approaches yields richer insights than either method in 
isolation [11]. The comparison across three temporally 
distinct crisis episodes provides evidence regarding the 
generalizability of transmission patterns versus crisis-
specific dynamics. Identification of specific sector-to-
sector pathways offers actionable intelligence for 
regulatory stress testing and macroprudential policy 
design [12]. The quantification of transmission intensity 
variations between normal and stressed periods supplies 
empirical benchmarks for calibrating early warning 
systems. 

From a practical standpoint, the findings inform 
financial stability monitoring by highlighting which 
market segments warrant enhanced surveillance. The 
revealed transmission pathways suggest specific 
channels through which policy interventions might 
effectively disrupt contagion cascades [13]. Network 
centrality rankings identify systemically important 
positions that could benefit from targeted capital buffer 
requirements or enhanced disclosure obligations. The 
research framework itself provides a replicable template 
for ongoing monitoring of evolving patterns of market 
interconnectedness [14]. 

2. Theoretical Framework and Literature Review 

2.1. Systemic Risk and Cross-Market Contagion 

Theory 

Financial contagion manifests through multiple 
theoretical mechanisms that operate simultaneously 
during stress episodes. Fundamental linkages arise from 
shared macroeconomic exposures, where common risk 
factors affect different asset classes through parallel 
channels. When economic growth expectations 
deteriorate, both credit spreads widen, and equity 
valuations decline due to increased default probabilities 
and reduced future cash flow projections. These 
fundamental connections establish baseline correlation 
levels that prevail during normal market conditions. 

Beyond fundamental channels, behavioral and 
institutional factors generate amplification effects 
during stress periods. Information cascades occur when 
market participants interpret price movements in one 
market as signals about conditions in related markets. 
When credit spreads widen, equity investors may infer 
deteriorating firm fundamentals and adjust their 
positions accordingly, creating feedback loops that 
strengthen cross-market linkages. Portfolio rebalancing 
by institutional investors facing redemptions or margin 
calls necessitates simultaneous liquidations across 
multiple asset classes, mechanically linking price 
movements through forced selling pressures. 

Liquidity spirals represent another critical contagion 
mechanism, particularly relevant during severe stress 
episodes. Market-making capacity contracts as dealers 
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reduce their appetite for risk-taking, thereby affecting 
both credit and equity markets. Widening bid-ask 
spreads and declining trade volumes impair price 
discovery and amplify volatility spillovers. Common 
counterparty exposures across derivatives markets 
create additional transmission channels, as hedging 
activities in one market propagate to related markets via 
delta hedging and other risk-management practices. 

2.2. Network Analysis Applications in Financial 

Markets 

Network methodologies have gained substantial traction 
in financial contagion research over the past two 
decades. The conceptual appeal stems from network 
theory's capacity to represent complex 
interdependencies as tractable graph structures 
amenable to analytical treatment. Nodes represent 
financial entities or market segments, while edges 
capture pairwise relationships defined through 
correlation, causality, or contractual linkages. Network 
topology metrics then quantify structural properties 
relevant to shock propagation dynamics. 

Correlation-based networks employ statistical 
association measures to define edge weights, with 
stronger correlations indicating tighter coupling 
between nodes. Return correlation matrices can be 
filtered using various thresholding or significance-
testing procedures to extract networks that highlight the 
strongest relationships. These undirected networks 
capture symmetric co-movement patterns but provide 
limited insight into the directionality of causation. 
During stress periods, correlation networks typically 
exhibit increased density as pairwise associations 
strengthen, reflecting heightened synchronization 
across market segments. 

Granger causality networks offer complementary 
perspectives by testing whether one time series contains 
predictive information for another beyond what the 
target series' own history provides. This econometric 
approach produces directed networks where edges point 
from causally prior to causally subsequent variables. 
Distinguishing causation from mere correlation enables 
the identification of leading indicators and transmission 
sequences. Granger causality networks reveal how 
information flows through financial systems, 
identifying which markets tend to move first and 
influence subsequent adjustments in other markets. 

2.3. Empirical Studies on Credit-Equity Market 

Linkages 

Previous empirical investigations have established 
strong connections between credit and equity markets 
through various analytical lenses. Studies examining 
contemporaneous correlations between CDS spreads 

and equity returns document negative correlations, 
reflecting their opposing sensitivities to changes in firm 
value. When equity prices decline, implied default 
probabilities rise, as evidenced by widening CDS 
spreads. The strength of this relationship varies across 
firm characteristics, with higher leverage and lower 
asset volatility associated with tighter credit-equity 
linkages. 

Lead-lag relationship analyses utilizing vector 
autoregression frameworks have produced mixed 
findings regarding which market leads price discovery 
[15]. Some research identifies equity markets as 
informationally dominant, with equity price changes 
predicting subsequent changes in CDS spreads. 
Alternative evidence suggests credit markets may lead 
during periods of deteriorating fundamentals, as bond 
investors potentially possess superior credit assessment 
capabilities. The heterogeneity of findings likely 
reflects time-varying leadership patterns that vary with 
the nature and source of incoming information. 

Crisis-specific studies focusing on the 2008 financial 
turmoil document dramatic increases in cross-market 
spillovers during peak stress phases. Volatility 
transmission intensifies, with equity market turbulence 
rapidly propagating to credit markets and vice versa. 
Sector-level analyses reveal differential vulnerabilities, 
with financial sector linkages exhibiting particularly 
strong amplification during banking crises. Geographic 
spillover studies demonstrate that disruptions in U.S. 
markets are transmitted internationally through multiple 
channels, including trade linkages, common creditor 
exposures, and sentiment contagion. 

3. Research Methodology 

3.1. Data Collection and Market Stress Period 

Identification 

The empirical analysis employs daily frequency data 
spanning January 2, 2008, through December 29, 2024, 
totaling 4,270 trading days. Credit market indicators 
comprise three primary measures: the CDX North 
America Investment Grade Index, the CDX North 
America High Yield Index, and individual CDS spreads 
for major financial institutions. These instruments 
provide comprehensive coverage of corporate credit risk 
perceptions across quality tiers and sectoral 
concentrations. CDS data sourced from Bloomberg 
captures mid-quotes for 5-year contracts, the most liquid 
maturity point serving as the benchmark pricing 
reference. 

Equity market data encompasses the S&P 500 index 
alongside eleven sector-specific indices corresponding 
to Global Industry Classification Standard (GICS) Level 
1 categories: Energy, Materials, Industrials, Consumer 
Discretionary, Consumer Staples, Health Care, 
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Financials, Information Technology, Communication 
Services, and Utilities. Daily closing prices and trading 
volumes for sector indices enable the construction of 
return series and volatility measures. VIX index values 
supplement equity data by capturing aggregate market 
expectations of uncertainty. All price series undergo 
logarithmic transformation to compute continuously 
compounded returns. 

Market stress period identification employs a dual-
criteria approach combining absolute threshold 
violations and relative percentile rankings. Absolute 
thresholds include VIX exceeding 30 and investment-
grade CDS spreads surpassing 150 basis points, used in 
this study as practical stress thresholds. Relative criteria 
identify periods when either measure exceeds its 90th 
percentile calculated over trailing 252-day windows. 
This methodology yields three distinct stress episodes: 
the 2008-2009 financial crisis (September 2008 - March 
2009), the 2020 COVID-19 shock (February - April 
2020), and the 2023 regional banking stress (March - 
May 2023). Normal periods encompass all remaining 
observations outside identified stress windows. 

Data preprocessing addresses non-trading-day 
alignment across markets by synchronizing all series to 
a common trading-day calendar. Missing observations 
due to market closures or data-reporting gaps are treated 
with forward fill, carrying the last available value 
forward to maintain time-series continuity. Outlier 
detection employs modified Z-score criteria, flagging 
observations exceeding 3.5 median absolute deviations 
from rolling medians. Identified outliers undergo 
manual review, with retention decisions based on 
whether extreme values correspond to documented 
market events or reflect apparent data errors. Stationary 
testing via Augmented Dickey-Fuller procedures 
confirms return series exhibits stable statistical 
properties suitable for subsequent modeling. 

3.2. Network Construction Approaches 

The correlation network construction is initialized with 
the calculation of Pearson correlation coefficients 
between all pairwise combinations of credit and equity 
return series. For K total time series (combining credit 
and equity measures), this produces a K×K symmetric 
correlation matrix. Rolling window estimation employs 
63-day (quarterly) windows, advanced in 5-day 
increments, generating time-varying correlation 
network sequences that capture evolving market 
interdependencies. Static networks corresponding to 
identified stress periods aggregate observations within 
each episode to characterize typical stress-period 
connectivity patterns. 

Statistical significance filtering applies Fisher’s Z-
transformation to correlation coefficients, testing the 
null hypothesis of zero correlation at the 5% 

significance level. Only statistically significant 
correlations translate into network edges, reducing noise 
from spurious associations. Edge weights equal absolute 
correlation magnitudes, with negative correlations 
treated equivalently to positive correlations of the same 
magnitude since both reflect strong co-movement. The 
resulting undirected weighted networks represent 
contemporaneous association structures where edge 
presence indicates reliable co-movement and edge 
weights quantify relationship strength. 

Granger causality network construction implements 
vector autoregression models, testing whether lagged 
values of one series predict another, controlling for the 
target series' own lags. For each potential directional 
edge from series X to Y, the procedure estimates 
restricted and unrestricted VAR models and compares 
goodness-of-fit using F-tests. Lag order selection 
employs Akaike Information Criterion, balancing model 
fit against parameter proliferation with typical 
selections of 5-10 daily lags. Rejection of the null 
hypothesis that X does not Granger-cause Y at 5% 
significance levels establishes directed edges in the 
causality network. 

Multivariate causality testing extends bivariate 
procedures by conditioning on full information sets, 
including all observed series. This controls for indirect 
causality chains and spurious relationships driven by 
common third factors. The computational intensity of 
full multivariate testing necessitates dimensionality 
reduction for systems with numerous time series. 
Principal component analysis extracts dominant co-
movement patterns, and causality tests are applied to the 
leading principal components, which represent major 
market factors. Alternative dimensionality reduction 
employs clustering to group similar series, with 
representative series from each cluster entering 
causality analyses. 

Network density metrics quantify overall connectivity 
by dividing the number of existing edges by the 
maximum possible number of edges. For undirected 
correlation networks with K nodes, the maximum 
possible edges equal K(K-1)/2. Observed edge counts 
divided by the maximum yield density values, ranging 
from 0 (no connections) to 1 (complete graph). Directed 
causality networks permit up to K(K-1) edges since 
directionality doubles potential connections. Temporal 
density evolution reveals whether markets become more 
tightly coupled during stress periods, with increasing 
density indicating contagion intensification. 

3.3. Contagion Pathway Identification Metrics 

Node centrality measures characterize the importance of 
positions within network structures through multiple 
conceptual lenses. Degree centrality counts direct 
connections, identifying nodes with many immediate 
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neighbors. For undirected correlation networks, degree 
equals the sum of edge weights connected to each node. 
Directed causality networks separate in-degree 
(incoming causal arrows) from out-degree (outgoing 
arrows), distinguishing information receivers from 
sources. High-degree nodes serve as hubs that 
concentrate connectivity, whereas low-degree 
peripheral nodes exhibit limited direct coupling. 

Betweenness centrality quantifies how frequently nodes 
appear on shortest paths connecting other node pairs. 
Calculation identifies all shortest paths linking every 
possible origin-destination combination, counting how 
many traverse each intermediate node. Nodes with high 
betweenness occupy strategic positions along 
transmission chains, serving as bridges or bottlenecks. 
In contagion contexts, high-betweenness nodes 
constitute critical intervention points at which 
disrupting connections could fragment networks and 
contain shock propagation. 

Eigenvector centrality extends simple degree counting 
by weighting connections according to the importance 
of their neighbors. A node connected to other highly 
central nodes receives higher eigenvector scores than 
one connected to peripheral nodes of equal count. This 
recursive definition yields the principal eigenvector of 
the adjacency matrix, with components representing 
nodes' centrality scores. Eigenvector centrality 
identifies core versus peripheral structures, revealing 
which nodes occupy influential positions based on the 
quality of their neighborhoods rather than mere degree. 

PageRank centrality adapts Google's web page ranking 
algorithm to financial networks, capturing influence 
through directed edge structures. The algorithm models 
random walks across networks, assigning importance 
based on the stationary distributions of hypothetical 
walkers. Damping parameters control the probability 

that walkers randomly jump to any node rather than 
follow edges. Financial interpretation views PageRank 
as capturing long-run influence propagation through 
multi-step transmission chains beyond immediate 
neighbors. 

Contagion strength quantification employs conditional 
correlation and volatility spillover indices. Conditional 
correlation measures compare crisis-period correlations 
with normal-period baselines; significant increases 
indicate contagion. Volatility spillover indices based on 
forecast error variance decomposition attribute each 
variable's forecast uncertainty to innovations in other 
variables. High spillover contributions from one market 
to another quantify directional transmission intensity. 
Time-varying spillover estimates from rolling-window 
variance decompositions track the evolution of strength 
as conditions transition between normal and stressed 
states. 

Statistical validation combines bootstrap resampling 
and permutation testing. Bootstrap procedures generate 
empirical sampling distributions for centrality measures 
by repeatedly resampling observations with 
replacement. Confidence intervals derived from 
bootstrap distributions assess whether observed 
differences in centrality across stress periods exceed 
sampling variability. Permutation tests randomly shuffle 
crisis period labels while preserving time series 
structure, creating null distributions under hypotheses of 
no crisis-specific effects. Observed statistics in the tails 
of the distribution indicate statistically significant 
structural changes during stress episodes. 

4. Empirical Analysis and Findings 

4.1. Network Structure Characteristics Analysis 

Table 1: Network Topology Metrics Across Market Regimes 

Metric Normal Period (Mean) 2008 Crisis 2020 COVID 2023 Banking Stress Average 

Correlation Network Density 0.23 0.67 0.61 0.54 0.61 

Causality Network Density 0.18 0.49 0.44 0.41 0.45 

Average Clustering Coefficient 0.31 0.72 0.68 0.64 0.68 

Average Path Length 2.84 1.57 1.68 1.79 1.68 

Network Diameter 6.00 3.00 4.00 4.00 3.67 

Modularity 0.42 0.19 0.23 0.26 0.23 

The correlation network exhibits substantial 
densification during stress periods, with edge density 
increasing from 0.23 under normal conditions to an 
average of 0.61 across the three crisis episodes. This 
165% surge in density reflects widespread correlation 
amplification as market co-movements intensify under 
turbulent conditions. The 2008 financial crisis 
demonstrates the highest connectivity, with a density of 
0.67, compared with subsequent crises' more moderate 
but still elevated levels. Such density variations suggest 

that crisis-specific characteristics influence the 
magnitude of interconnectedness, with systemic 
banking crises generating more pervasive coupling than 
exogenous shocks. 

Granger causality networks display parallel though less 
dramatic densification patterns. Normal period causality 
density of 0.18 expands to 0.45 average during stress 
episodes, representing a 150% increase. The smaller 
relative densification in correlation networks suggests 
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that, while predictive relationships strengthen during 
crises, contemporaneous associations intensify even 
more rapidly. This differential behavior implies stress 
periods enhance both immediate co-movement and 
lagged transmission, with the former exhibiting greater 
magnitude responses. 

Clustering coefficients measuring local connectivity 
concentration rise sharply from normal values of 0.31 to 
stress averages of 0.68. High clustering indicates that 
markets form tightly interconnected groups in which 
connected nodes share many common neighbors. 
During stress periods, these clusters coalesce into 
broader structures as between-cluster connections 
strengthen. The progression toward higher global 

cohesion reflects diminishing diversification benefits as 
previously independent market segments become 
synchronized through contagion mechanisms. 

Average path lengths decline from 2.84 steps under 
normal conditions to 1.68 during stress periods, 
indicating reduced separation between market 
segments. Shorter paths facilitate more direct and rapid 
transmission of shocks across the network. The 
concurrent reduction in diameter from 6 to 
approximately 4 edges indicates that even the most 
distant market pairs move closer together in network 
space during crises. These topological shifts 
characterize the transition from segmented to integrated 
market structures during stress propagation. 

Figure 1: Network Topology Evolution During 2008 Financial Crisis 

 

This figure presents a four-panel time-series 
visualization of the evolution of network density, 
average clustering, average path length, and modularity 
from August 2008 through December 2009. The x-axis 
represents calendar time at monthly intervals, while y-
axes display standardized metric values ranging from 0 
to 1 for comparability. Each panel includes color 
shading to differentiate the pre-crisis period (August-
September 2008, light blue), the acute crisis phase 
(October 2008-March 2009, red), and the recovery 
period (April-December 2009, green). Density and 
clustering metrics rise sharply as the crisis unfolds in 
September-October 2008, peaking in December 2008-
January 2009 before gradually declining through mid-
2009. Path length and modularity demonstrate inverse 
patterns, declining rapidly during crisis onset and 
recovering slowly through 2009. Vertical reference 
lines mark key events, including the Lehman Brothers 
bankruptcy (September 15, 2008), the TARP program 

announcement (October 14, 2008), and the stress test 
results publication (May 7, 2009). The visualization 
employs smooth lines with 95% confidence bands 
derived from bootstrap resampling, illustrating the 
uncertainty around the trajectory estimates. 

Modularity scores quantifying community structure 
strength decrease from 0.42 during normal times to 0.23 
on average across crises. Lower modularity indicates 
weaker differentiation among market segments, as 
formerly distinct communities merge due to increased 
between-group connections. The breakdown of modular 
organization reflects contagion's tendency to erase 
boundaries separating market compartments. While 
some residual community structure persists even during 
severe stress, the magnitude of modularity decline 
confirms substantial erosion of segmentation during 
crisis propagation. 
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Table 2: Sector-Level Correlation Network Statistics 

Sector Normal 

Degree 

Stress 

Degree 

Degree 

Change 

(%) 

Normal 

Betweenness 

Stress 

Betweenness 

Betweenness 

Change (%) 

Financials 4.20 14.70 250.0% 0.31 0.54 74.0% 

Energy 3.10 9.80 216.0% 0.18 0.39 117.0% 

Industrials 3.80 11.40 200.0% 0.24 0.46 92.0% 

Technology 3.30 10.20 209.0% 0.21 0.41 95.0% 

Consumer 

Discretionary 

3.50 10.80 209.0% 0.23 0.43 87.0% 

Consumer Staples 2.70 8.10 200.0% 0.16 0.32 100.0% 

Health Care 2.90 8.90 207.0% 0.17 0.35 106.0% 

Materials 3.40 10.50 209.0% 0.22 0.42 91.0% 

Utilities 2.50 7.80 212.0% 0.14 0.29 107.0% 

Communication 

Services 

3.10 9.60 210.0% 0.19 0.38 100.0% 

The sector-level decomposition reveals differential 
centrality changes across industries during stress 
transitions. Financial sector equities demonstrate the 
largest absolute degree increases, expanding from 4.2 
average connections during normal periods to 14.7 
during crises. This 250% expansion reflects financials' 

central role in transmitting credit market disruptions to 
broader equity markets. The financial sector's elevated 
stress-period betweenness of 0.54 confirms its position 
as a critical transmission node bridging credit and equity 
market segments. 

Figure 2: Heat Map of Cross-Sector Correlation Changes 

 



 

Journal of Advanced Computing Systems (JACS)  ISSN: 3066-3962 

 

Vol. 6(2), pp. 50-63, February 2026  

[57] 

This figure presents a 10×10 symmetric heat map 
displaying changes in pairwise sector correlations from 
normal to stress periods. Each matrix cell represents one 
sector pair, with color intensity indicating the magnitude 
of correlation. The color scale ranges from white (no 
change) through yellow (+0.2 change) to dark red (+0.6 
change). Row and column headers identify the ten GICS 
Level 1 sectors. Diagonal elements are omitted (or set to 
zero) because the focus is on cross-sector correlation 
changes. The heat map reveals concentrated high-
intensity cells along the financial sector row/column, 
indicating that its connections to other sectors exhibit 
the largest increases in correlation. Technology-

Consumer Discretionary, Energy-Materials, and 
Industrials-Materials sector pairs also exhibit above-
average correlations, as indicated by orange-red cells. 
The visualization employs hierarchical clustering to 
order sectors by similarity, placing related industries 
adjacent to one another and highlighting community 
structures. A color bar legend appears to the right of the 
matrix, with numerical labels indicating correlation 
change magnitudes at regular intervals. 

4.2. Risk Contagion Pathway Identification Results 

Table 3: Primary Transmission Pathways - Credit to Equity Markets 

Source 

(Credit) 

Destination (Equity 

Sector) 

Granger Causality 

F-Statistic 

Correlation 

Change 

Transmission Lag 

(Days) 

Strength 

Ranking 

IG CDS 

Index 

Financials 47.3*** +0.54 1-2 1 

IG CDS 

Index 

Industrials 31.8*** +0.47 2-3 2 

HY CDS 

Index 

Energy 28.4*** +0.51 1-2 3 

IG CDS 

Index 

Technology 26.9*** +0.44 2-4 4 

Financial 

CDS 

Financials 24.7*** +0.58 1 5 

HY CDS 

Index 

Materials 22.3*** +0.42 2-3 6 

IG CDS 

Index 

Consumer 

Discretionary 

21.8*** +0.43 2-4 7 

Financial 

CDS 

Real Estate 19.4*** +0.46 1-2 8 

HY CDS 

Index 

Industrials 17.9*** +0.39 3-4 9 

IG CDS 

Index 

Materials 16.2*** +0.38 2-3 10 

Note: *** indicates significance at p < 0.001 level. 

The investment-grade CDS index-to-financial-sector-
equity pathway emerges as the dominant transmission 
channel, with a Granger causality F-statistic of 47.3, 
indicating strong predictive power. CDS spread 
widening precedes declines in financial stocks by 1-2 

trading days during stress periods, suggesting potential 
short-term early-warning signals for equity market 
weakness. The increase in the absolute magnitude of the 
correlation (reported as +0.54) indicates stronger 
coupling beyond the predictive relationships. 

Table 4: Reverse Transmission Pathways - Equity to Credit Markets 

Source (Equity 

Sector) 

Destination 

(Credit) 

Granger 

Causality F-

Statistic 

Correlation 

Change 

Transmission Lag 

(Days) 

Strength 

Ranking 

Financials Financial CDS 18.7*** +52.0% 1 1 

Financials IG CDS Index 14.3*** +48.0% 1 - 2 2 
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Energy HY CDS Index 12.6*** +44.0% 2 3 

Technology IG CDS Index 11.9*** +39.0% 2 - 3 4 

Industrials IG CDS Index 10.4*** +37.0% 2 - 3 5 

Materials HY CDS Index 9.8*** +35.0% 2 - 3 6 

Consumer 

Discretionary 

IG CDS Index 8.7*** +34.0% 3 - 4 7 

Real Estate Financial CDS 7.9** +38.0% 2 8 

Health Care IG CDS Index 6.4** +29.0% 3 - 5 9 

Utilities IG CDS Index 5.2** +26.0% 4 - 5 10 

Reverse transmission from equity to credit markets 
exhibits generally weaker statistical magnitudes than 
forward pathways, with F-statistics approximately 40-
60% smaller. Financial sector equity to financial CDS 

represents the strongest reverse pathway at 18.7, 
maintaining the tight 1-day transmission lag observed in 
the forward direction. 

Figure 3: Network Diagram of Major Contagion Pathways 

This figure presents a directed network graph 
visualizing the top 20 transmission pathways identified 
through Granger causality analysis. Nodes represent 
market segments with square shapes denoting credit 
markets (colored red) and circular shapes representing 
equity sectors (colored blue). Node sizes scale 
proportional to total degree centrality, with larger nodes 
indicating more connections. Edge thickness 
corresponds to transmission strength measured by F-
statistic magnitude, with thicker arrows indicating 
stronger causal relationships. Edge colors transition 
from light gray for weaker pathways to dark black for 
the strongest transmission channels. The layout employs 
a force-directed positioning algorithm that places nodes 

with higher connectivity closer together. Financial 
sector nodes cluster centrally due to their high 
connectivity, whereas peripheral sectors such as utilities 
and consumer staples occupy peripheral positions. 
Directional arrows point from causally prior to causally 
subsequent variables, enabling visual identification of 
predominant transmission directions. Labels 
accompany each node, indicating the market segment 
name, while edge labels display average transmission 
lag in days. A legend in the lower right corner explains 
node shapes, colors, and size scaling, while a separate 
edge legend shows the F-statistic magnitude ranges 
corresponding to different thickness levels. 
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4.3. Transmission Intensity Quantification 

Table 5: Volatility Spillover Indices Across Crisis Episodes 

Time Period Credit→Equity 

Spillover 

Equity→Credit 

Spillover 

Total 

Connectivity 

Spillover 

Asymmetry 

Normal (2010 - 

2019) 

23.4% 18.7% 42.1% 1.25 

2008 Crisis Peak 81.2% 54.3% 135.5% 1.50 

2008 Crisis 

Overall 

67.9% 47.8% 115.7% 1.42 

2020 COVID Peak 73.6% 51.2% 124.8% 1.44 

2020 COVID 

Overall 

62.4% 44.9% 107.3% 1.39 

2023 Banking 

Peak 

68.9% 48.7% 117.6% 1.41 

2023 Banking 

Overall 

58.3% 42.1% 100.4% 1.38 

All Stress Periods 

Avg 

62.9% 44.9% 107.8% 1.40 

Note: Total Connectivity is defined as the sum of directional spillovers (Credit→Equity + Equity→Credit), so values may exceed 

100%. 

Volatility spillover analysis based on forecast error 
variance decomposition quantifies the percentage of 
each market segment's forecast uncertainty attributable 
to shocks in other segments. During normal periods, 
credit markets explain 23.4% of equity market volatility 

on average, while equity markets account for 18.7% of 
credit market volatility. This baseline 42.1% total 
connectivity reflects moderate interdependence under 
tranquil conditions. 

Table 6: Sector-Specific Transmission Strength Rankings 

Equity Sector Credit→Equity 

Strength 

Rank Equity→Credit 

Strength 

Rank Combined 

Score 

Overall 

Rank 

Financials 0.89 1 0.73 1 1.62 1 

Energy 0.76 2 0.61 3 1.37 2 

Industrials 0.72 3 0.58 4 1.30 3 

Technology 0.68 4 0.54 5 1.22 4 

Materials 0.65 5 0.52 6 1.17 5 

Consumer 

Discretionary 

0.63 6 0.49 7 1.12 6 

Real Estate 0.59 7 0.64 2 1.23 7 

Communication 

Services 

0.56 8 0.46 8 1.02 8 

Health Care 0.51 9 0.42 9 0.93 9 

Consumer Staples 0.48 10 0.39 10 0.87 10 

Utilities 0.44 11 0.36 11 0.80 11 

Transmission strength rankings employ composite 
measures combining Granger causality F-statistics, 
correlation changes, and spillover index contributions. 

The financial sector demonstrates overwhelming 
dominance with a combined score of 1.62, substantially 
exceeding the second-ranked energy at 1.37. 

Table 7: Dynamic Contagion Metrics by Crisis Phase 
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Crisis Phase Average Network 

Density 

Spillover 

Index 

Betweenness Centrality 

(Financials) 

Peak 

Correlation 

Recovery Time 

(Days) 

2008 Pre - 

Crisis 

0.28 32.1% 0.35 0.42 - 

2008 Acute 

Phase 

0.71 82.7% 0.61 0.87 - 

2008 

Recovery 

0.43 51.2% 0.44 0.58 187 

2020 Pre - 

Crisis 

0.24 28.4% 0.32 0.39 - 

2020 Acute 

Phase 

0.64 75.3% 0.57 0.81 - 

2020 

Recovery 

0.38 46.8% 0.41 0.53 94 

2023 Pre - 

Crisis 

0.25 29.7% 0.33 0.41 - 

2023 Acute 

Phase 

0.58 69.4% 0.52 0.76 - 

2023 

Recovery 

0.34 42.1% 0.38 0.49 67 

Figure 4: Time-Varying Transmission Strength Through 2020 COVID Crisis 

This figure displays three stacked time series panels 
covering January 2020 through December 2020 at a 
daily frequency. The top panel plots the credit-to-equity 
spillover index as a solid blue line with values on the left 
y-axis ranging from 0% to 100%. The middle panel 
shows the equity-to-credit spillover index as a solid red 
line using the same scale. The bottom panel presents the 
spillover asymmetry ratio (credit/equity) as a green line, 
with a right-hand y-axis ranging from 0.5 to 2.0. All 

panels share the common x-axis displaying calendar 
months. Vertical gray-shaded regions indicate the acute 
crisis period from February 20 to April 20, 2020, 
encompassing the initial market collapse and early 
recovery phases. Additional vertical dashed lines 
indicate key events, including the WHO pandemic 
declaration (March 11), the market bottom (March 23), 
and the passage of the CARES Act (March 27). The 
credit-to-equity spillover surges from 25% in January to 
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a peak of 75% in mid-March, then declines gradually to 
45% by June and stabilizes around 35% through year-
end. Equity-to-credit spillover displays parallel but 
smaller-magnitude movements, rising from 18% to 52% 
at its peak and declining to 32% by December. The 
asymmetry ratio spikes above 1.5 on peak crisis days, 
indicating intensification of credit market dominance, 
before reverting to a baseline of 1.2 during the recovery. 
Smooth lines employ 7-day moving averages to reduce 
noise, while confidence bands show 95% intervals from 
bootstrap estimation. 

5. Conclusions and Policy Implications 

5.1. Key Research Findings Summary 

The empirical analysis reveals several critical insights 
regarding risk contagion pathways between U.S. credit 
and equity markets during stress periods. Network 
topology transitions exhibit consistent patterns across 
multiple crisis episodes, with correlation density 
increasing by approximately 165% and causality density 
increasing by 150% relative to normal periods. These 
structural shifts indicate a systematic movement toward 
greater market integration during stress, supporting 
concerns that diversification benefits are reduced when 
they are most valuable. The topology changes occur 
rapidly following crisis onset, typically reaching peak 
connectivity within 2-4 weeks of the initial 
manifestation of stress. 

Financial-sector equity emerges as the dominant 
transmission channel linking credit-market disruptions 
to broader equity-market weakness. The sector exhibits 
the highest centrality measures across multiple network 
metrics, functions as the strongest predictive pathway 
for credit-to-equity transmission, and demonstrates the 
tightest temporal coupling with 1–2-day lags. This 
centrality reflects financial institutions' unique position: 
they simultaneously participate in credit markets as 
borrowers and intermediaries and serve as equity market 
components. Policy frameworks emphasizing financial 
sector resilience are supported by empirical evidence 
documenting the sector's importance in transmission. 

Transmission intensity quantification reveals that credit 
markets exert a stronger influence on equity markets 
than the reverse during all analyzed stress periods. The 
consistent 1.38-1.50 spillover asymmetry ratios indicate 
that credit market shocks explain 38-50% more equity 
market volatility than equity shocks explain credit 
market volatility. This directional dominance suggests 
credit market developments provide leading indicators 
for subsequent equity market adjustments. The 
magnitudes of asymmetry increase during acute crisis 
peaks, reaching maximum values around pivotal events 
such as the Lehman Brothers bankruptcy and the 
COVID-19 market bottoms. 

Cross-crisis comparisons identify both common 
patterns and episode-specific variations in contagion 
dynamics. All three analyzed stress periods share 
qualitative features, including topological densification, 
financial-sector centrality, and informational leadership 
in credit markets. The 2008 financial crisis consistently 
exhibits the highest magnitudes across metrics, 
reflecting its origins in banking systems and associated 
credit-market disruptions. The COVID crisis displays 
the most rapid initial intensification due to its sudden 
exogenous shock character, though peak magnitudes 
remain below 2008 levels. The 2023 regional banking 
stress exhibits more concentrated impacts on financial-
sector pathways, with narrower spillovers to other 
sectors. 

5.2. Policy Recommendations for Financial Stability 

Monitoring 

The identified contagion pathways suggest several 
policy applications for financial stability monitoring 
frameworks. Network density metrics calculated using 
rolling 60-day windows provide real-time indicators of 
trends in interconnectedness. Sustained density 
increases above 0.45 for correlation networks or 0.35 for 
causality networks could trigger enhanced supervisory 
attention and targeted data collection. These threshold 
levels correspond to the midpoints between normal and 
crisis-period averages, providing early warning before 
full crisis intensification occurs. Automated monitoring 
systems could generate alerts when density crosses 
thresholds or displays accelerating growth patterns. 

Financial sector centrality measures warrant particular 
surveillance attention given empirical evidence of the 
sector's transmission dominance. Monthly calculations 
of financial sector betweenness centrality, degree 
centrality, and eigenvector centrality establish baseline 
distributions during normal periods. Deviations 
exceeding two standard deviations from the normal 
range indicate abnormal financial sector connectivity 
and warrant investigation. The specific banks or 
financial institutions that drive increases in aggregate 
centrality become focal points for deeper examination 
of potential systemic vulnerabilities. This sector-
specific monitoring complements traditional 
microprudential supervision by focusing on individual 
institutions’ soundness. 

Granger causality testing between credit and equity 
markets provides lead-lag relationship intelligence 
valuable for stress testing scenario design. The 
documented 1–4-day transmission lags from credit to 
equity markets suggest credit market stress indicators 
offer short-term predictive content for subsequent 
equity market movements. Stress-testing scenarios that 
incorporate sequential shock propagation through 
identified pathways yield more realistic loss estimates 
than scenarios that assume simultaneous shocks across 
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all markets. The pathway-specific transmission lags 
inform realistic timing assumptions for cascade 
development in stress-testing narratives. 

Volatility spillover indices aggregated at weekly or 
monthly frequencies track overall system integration 
levels. Spillover values exceeding 60% for the credit-to-
equity transmission signal were associated with elevated 
contagion risk. The combination of high spillover 
magnitudes with rising network density provides 
stronger warning signals than either metric in isolation. 
Regulatory authorities could establish graduated 
response protocols, with information gathering at 50% 
spillover thresholds, enhanced reporting requirements at 
60%, and potential supervisory actions at 70% if 
sustained over multi-week periods. These graduated 
responses balance the benefits of early intervention 
against the risks of false positives from temporary 
spillover spikes. 

The sector-specific transmission rankings inform the 
allocation of risk-based supervision. Beyond the 
financial sector's obvious importance, the energy 
sector's second-rank position warrants closer 
monitoring of energy firms' credit conditions and equity 
market performance. Credit exposures to energy 
companies warrant scrutiny, particularly during 
episodes of oil price volatility that affect the sector's 
debt-servicing capacity. Similarly, the real estate 
sector's elevated equity-to-credit transmission strength 
justifies continued attention to property market 
indicators as potential harbingers of credit stress. 

5.3. Research Limitations and Future Directions 

Several methodological limitations merit 
acknowledgment. The analysis focuses exclusively on 
publicly traded equity markets, potentially missing 
over-the-counter credit market dynamics and private 
credit transmission channels. Corporate bond markets, 
bank loan markets, and private credit funds constitute 
substantial credit market segments that interact with the 
public equity and CDS markets analyzed here. Future 
research that incorporates broader coverage of the credit 
market would yield more comprehensive contagion 
mapping. The technical challenge involves obtaining 
high-frequency private-market data comparable to 
publicly available equity and CDS data. 

The network construction approaches employed here 
represent two among numerous possible methodologies. 
Alternative network definitions based on mutual 
information, transfer entropy, or tail dependence 
copulas might reveal complementary transmission 
patterns. Nonlinear causality testing addresses potential 
limitations of linear Granger causality in capturing 
threshold effects or regime-switching behaviors. 
Systematically comparing multiple network 
construction methods would establish the robustness of 

the identified pathways across specification choices. 
Such comparative analysis requires substantial 
computational resources, given the numerous series and 
rolling estimation requirements. 

The identification of stress periods relies on objective 
statistical thresholds but inevitably involves some 
subjectivity in crisis demarcation. Alternative 
identification schemes employing NBER recession 
dating, CBOE stress indices, or narrative approaches 
may yield different definitions of crisis periods. 
Sensitivity analysis of stress-period windows would 
quantify how pathway identification and strength 
estimation depend on precise crisis dating. Preliminary 
analysis suggests that the main findings remain robust 
to moderate variations in timing, but comprehensive 
sensitivity testing awaits further investigation. 

Geographic scope limitations restrict findings to U.S. 
markets, though contagion inherently involves cross-
border transmission. Extending the analysis to 
international markets and examining U.S. linkages with 
European and Asian financial systems would address 
this limitation. The methodological framework 
developed here can be applied directly to international 
settings, given data availability. Key questions concern 
whether U.S. market dominance primarily entails 
outward transmission or whether bidirectional 
spillovers operate across developed markets. Emerging 
market linkages to U.S. credit and equity markets 
present additional research opportunities with important 
policy implications. 

Temporal coverage ending in December 2024 excludes 
future crisis episodes that will inevitably provide 
additional natural experiments. Periodic updates to this 
analysis as new stress periods emerge will test whether 
the identified patterns persist or evolve as market 
structures change. Machine learning applications that 
aggregate multi-crisis data may enable the prediction of 
pathway-specific contagion intensities from crisis 
characteristics. Such predictive models would enhance 
real-time monitoring by forecasting likely transmission 
channels based on observed initial manifestations of 
stress. 
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