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Abstract

This paper investigates risk contagion pathways between U.S. credit and equity
markets during periods of financial stress through network-based
methodologies. The study constructs both correlation- and Granger-causality-
based networks to identify transmission channels and quantify contagion
intensity across market segments from 2008 to 2024. Using daily credit default
swap (CDS) spreads and equity sector indices, we analyze the evolution of
network topology during three major stress episodes: the 2008 financial crisis,
the 2020 COVID-19 market turbulence, and the 2023 regional banking stress.
Network centrality measures reveal systemically important transmission
nodes, while time-varying connectivity patterns demonstrate significant
amplification of cross-market linkages during stress periods. The empirical
findings indicate that financial sector stocks serve as primary transmission
channels from credit to equity markets, with contagion strength increasing
sharply (more than threefold) during crisis periods compared to normal times.
The research provides quantitative evidence for regulatory frameworks
focused on systemic risk monitoring and contributes methodological insights
for identifying vulnerable transmission pathways in interconnected financial

systems.

1. Introduction

1.1. Research Background and Motivation

The interconnectedness of modern financial markets
creates complex transmission mechanisms through
which localized shocks can propagate across asset
classes and geographic boundaries . The 2008 global
financial crisis demonstrated how  disruptions
originating in credit markets rapidly transmitted to
equity markets, triggering widespread  asset
devaluations and institutional failures. Subsequent
events, including the European sovereign debt crisis and
the COVID-19 pandemic, have reinforced concerns
about cross-market contagion dynamics within the U.S.
financial system [,

Understanding these transmission pathways is a critical
priority for regulatory authorities responsible for
maintaining financial stability. The Federal Reserve and
Financial Stability Oversight Council (FSOC) have
emphasized the need for analytical frameworks capable
of identifying systemic vulnerabilities before they

materialize into full-scale crises ). Traditional risk

assessment approaches that focus on individual
institutions' solvency provide an incomplete picture of
system-wide fragilities. Network-based methodologies
offer complementary perspectives by mapping
interdependencies and revealing how shocks propagate
through financial market structures.

Credit and equity markets maintain particularly strong
theoretical and empirical linkages, as both reflect
underlying firm valuations and respond to common
macroeconomic drivers . Credit default swaps have
evolved into primary indicators of credit risk
perceptions, with spreads widening sharply when
default probabilities increase. Equity markets
simultaneously process similar information through
volatility dynamics and cross-sectional return patterns
51 During stress periods, these parallel information
channels exhibit heightened correlation, suggesting
intensified risk transmission. The practical implications
extend beyond academic interest, as identifying
contagion pathways enables targeted regulatory
interventions and improves stress-testing protocols.
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1.2. Research Objectives and Scope

This investigation addresses three interconnected
research questions. First, what are the primary pathways
through which risk transmits from credit markets to
equity markets during financial stress periods? Second,
how does the strength and directionality of these
transmission channels vary across different crisis
episodes ©? Third, which market segments function as
critical nodes in the contagion network, serving as either
amplifiers or absorbers of systemic shocks?

The research scope focuses on U.S. market dynamics
from 2008 to 2024, encompassing multiple distinct
stress episodes that provide natural experiments for
analyzing contagion mechanisms. Credit market
indicators include investment-grade and high-yield
corporate bond spreads, as well as CDS indices covering
financial and non-financial sectors . Equity market
data comprises sector-level indices spanning ten S&P
industry classifications, enabling granular analysis of
cross-sectoral transmission patterns. The temporal
scope captures both gradual deterioration and sudden
shock events, facilitating comparisons of contagion
dynamics across different stress manifestations.

Methodologically, the study employs network
construction techniques based on both statistical
correlation and econometric causality testing. This dual
approach permits assessment of contemporancous
associations alongside directional predictive
relationships !, Network topology metrics, including
degree centrality, betweenness centrality, and clustering
coefficients, quantify structural properties relevant to
contagion propagation. Dynamic analysis using rolling-
window estimation reveals the temporal evolution of
connectivity patterns as market conditions transition
between normal and stressed states 1.

1.3. Paper Structure and Contributions

The paper proceeds through four additional sections
following this introduction. Section 2 reviews
theoretical foundations of financial contagion and
surveys empirical  literature on  cross-market
transmission mechanisms. Section 3 details the data
collection procedures, network construction
methodologies, and analytical metrics employed for
pathway identification and quantification of pathway
strength 1%, Section 4 presents empirical findings
regarding network structure evolution, identified
transmission pathways, and measured contagion
intensities across different stress periods. Section 5
concludes with policy implications and directions for
future research.

The investigation contributes to the existing literature in
several respects. Methodologically, it demonstrates how
combining correlation and causality network
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approaches ]yields richer insights than either method in
isolation "', The comparison across three temporally
distinct crisis episodes provides evidence regarding the
generalizability of transmission patterns versus crisis-
specific dynamics. Identification of specific sector-to-
sector pathways offers actionable intelligence for
regulatory stress testing and macroprudential policy
design "?!. The quantification of transmission intensity
variations between normal and stressed periods supplies
empirical benchmarks for calibrating early warning
systems.

From a practical standpoint, the findings inform
financial stability monitoring by highlighting which
market segments warrant enhanced surveillance. The
revealed transmission pathways suggest specific
channels through which policy interventions might
effectively disrupt contagion cascades !, Network
centrality rankings identify systemically important
positions that could benefit from targeted capital buffer
requirements or enhanced disclosure obligations. The
research framework itself provides a replicable template
for ongoing monitoring of evolving patterns of market
interconnectedness !4,

2. Theoretical Framework and Literature Review

2.1. Systemic Risk and Cross-Market Contagion
Theory

Financial contagion manifests through multiple
theoretical mechanisms that operate simultaneously
during stress episodes. Fundamental linkages arise from
shared macroeconomic exposures, where common risk
factors affect different asset classes through parallel
channels. When economic growth expectations
deteriorate, both credit spreads widen, and equity
valuations decline due to increased default probabilities
and reduced future cash flow projections. These
fundamental connections establish baseline correlation
levels that prevail during normal market conditions.

Beyond fundamental channels, behavioral and
institutional factors generate amplification effects
during stress periods. Information cascades occur when
market participants interpret price movements in one
market as signals about conditions in related markets.
When credit spreads widen, equity investors may infer
deteriorating firm fundamentals and adjust their
positions accordingly, creating feedback loops that
strengthen cross-market linkages. Portfolio rebalancing
by institutional investors facing redemptions or margin
calls necessitates simultaneous liquidations across
multiple asset classes, mechanically linking price
movements through forced selling pressures.

Liquidity spirals represent another critical contagion
mechanism, particularly relevant during severe stress
episodes. Market-making capacity contracts as dealers
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reduce their appetite for risk-taking, thereby affecting
both credit and equity markets. Widening bid-ask
spreads and declining trade volumes impair price
discovery and amplify volatility spillovers. Common
counterparty exposures across derivatives markets
create additional transmission channels, as hedging
activities in one market propagate to related markets via
delta hedging and other risk-management practices.

2.2. Network Analysis Applications in Financial
Markets

Network methodologies have gained substantial traction
in financial contagion research over the past two
decades. The conceptual appeal stems from network
theory's capacity to represent complex
interdependencies as tractable graph structures
amenable to analytical treatment. Nodes represent
financial entities or market segments, while edges
capture pairwise relationships defined through
correlation, causality, or contractual linkages. Network
topology metrics then quantify structural properties
relevant to shock propagation dynamics.

Correlation-based  networks  employ  statistical
association measures to define edge weights, with
stronger correlations indicating tighter coupling
between nodes. Return correlation matrices can be
filtered using various thresholding or significance-
testing procedures to extract networks that highlight the
strongest relationships. These undirected networks
capture symmetric co-movement patterns but provide
limited insight into the directionality of causation.
During stress periods, correlation networks typically
exhibit increased density as pairwise associations
strengthen, reflecting heightened synchronization
across market segments.

Granger causality networks offer complementary
perspectives by testing whether one time series contains
predictive information for another beyond what the
target series' own history provides. This econometric
approach produces directed networks where edges point
from causally prior to causally subsequent variables.
Distinguishing causation from mere correlation enables
the identification of leading indicators and transmission
sequences. Granger causality networks reveal how
information flows through financial systems,
identifying which markets tend to move first and
influence subsequent adjustments in other markets.

2.3. Empirical Studies on Credit-Equity Market
Linkages

Previous empirical investigations have established
strong connections between credit and equity markets
through various analytical lenses. Studies examining
contemporaneous correlations between CDS spreads
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and equity returns document negative correlations,
reflecting their opposing sensitivities to changes in firm
value. When equity prices decline, implied default
probabilities rise, as evidenced by widening CDS
spreads. The strength of this relationship varies across
firm characteristics, with higher leverage and lower
asset volatility associated with tighter credit-equity
linkages.

Lead-lag relationship analyses utilizing vector
autoregression frameworks have produced mixed
findings regarding which market leads price discovery
(151" Some research identifies equity markets as
informationally dominant, with equity price changes
predicting subsequent changes in CDS spreads.
Alternative evidence suggests credit markets may lead
during periods of deteriorating fundamentals, as bond
investors potentially possess superior credit assessment
capabilities. The heterogencity of findings likely
reflects time-varying leadership patterns that vary with
the nature and source of incoming information.

Crisis-specific studies focusing on the 2008 financial
turmoil document dramatic increases in cross-market
spillovers during peak stress phases. Volatility
transmission intensifies, with equity market turbulence
rapidly propagating to credit markets and vice versa.
Sector-level analyses reveal differential vulnerabilities,
with financial sector linkages exhibiting particularly
strong amplification during banking crises. Geographic
spillover studies demonstrate that disruptions in U.S.
markets are transmitted internationally through multiple
channels, including trade linkages, common creditor
exposures, and sentiment contagion.

3. Research Methodology

3.1. Data Collection and Market Stress Period
Identification

The empirical analysis employs daily frequency data
spanning January 2, 2008, through December 29, 2024,
totaling 4,270 trading days. Credit market indicators
comprise three primary measures: the CDX North
America Investment Grade Index, the CDX North
America High Yield Index, and individual CDS spreads
for major financial institutions. These instruments
provide comprehensive coverage of corporate credit risk
perceptions across quality tiers and sectoral
concentrations. CDS data sourced from Bloomberg
captures mid-quotes for 5-year contracts, the most liquid
maturity point serving as the benchmark pricing
reference.

Equity market data encompasses the S&P 500 index
alongside eleven sector-specific indices corresponding
to Global Industry Classification Standard (GICS) Level
1 categories: Energy, Materials, Industrials, Consumer
Discretionary, Consumer Staples, Health Care,
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Financials, Information Technology, Communication
Services, and Ultilities. Daily closing prices and trading
volumes for sector indices enable the construction of
return series and volatility measures. VIX index values
supplement equity data by capturing aggregate market
expectations of uncertainty. All price series undergo
logarithmic transformation to compute continuously
compounded returns.

Market stress period identification employs a dual-
criteria approach combining absolute threshold
violations and relative percentile rankings. Absolute
thresholds include VIX exceeding 30 and investment-
grade CDS spreads surpassing 150 basis points, used in
this study as practical stress thresholds. Relative criteria
identify periods when either measure exceeds its 90th
percentile calculated over trailing 252-day windows.
This methodology yields three distinct stress episodes:
the 2008-2009 financial crisis (September 2008 - March
2009), the 2020 COVID-19 shock (February - April
2020), and the 2023 regional banking stress (March -
May 2023). Normal periods encompass all remaining
observations outside identified stress windows.

Data  preprocessing addresses  non-trading-day
alignment across markets by synchronizing all series to
a common trading-day calendar. Missing observations
due to market closures or data-reporting gaps are treated
with forward fill, carrying the last available value
forward to maintain time-series continuity. Outlier
detection employs modified Z-score criteria, flagging
observations exceeding 3.5 median absolute deviations
from rolling medians. Identified outliers undergo
manual review, with retention decisions based on
whether extreme values correspond to documented
market events or reflect apparent data errors. Stationary
testing via Augmented Dickey-Fuller procedures
confirms return series exhibits stable statistical
properties suitable for subsequent modeling.

3.2. Network Construction Approaches

The correlation network construction is initialized with
the calculation of Pearson correlation coefficients
between all pairwise combinations of credit and equity
return series. For K total time series (combining credit
and equity measures), this produces a KxK symmetric
correlation matrix. Rolling window estimation employs
63-day (quarterly) windows, advanced in 5-day
increments, generating time-varying correlation
network sequences that capture evolving market
interdependencies. Static networks corresponding to
identified stress periods aggregate observations within
each episode to characterize typical stress-period
connectivity patterns.

Statistical significance filtering applies Fisher’s Z-
transformation to correlation coefficients, testing the
null hypothesis of zero correlation at the 5%
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significance level. Only statistically significant
correlations translate into network edges, reducing noise
from spurious associations. Edge weights equal absolute
correlation magnitudes, with negative correlations
treated equivalently to positive correlations of the same
magnitude since both reflect strong co-movement. The
resulting undirected weighted networks represent
contemporaneous association structures where edge
presence indicates reliable co-movement and edge
weights quantify relationship strength.

Granger causality network construction implements
vector autoregression models, testing whether lagged
values of one series predict another, controlling for the
target series' own lags. For each potential directional
edge from series X to Y, the procedure estimates
restricted and unrestricted VAR models and compares
goodness-of-fit using F-tests. Lag order selection
employs Akaike Information Criterion, balancing model
fit against parameter proliferation with typical
selections of 5-10 daily lags. Rejection of the null
hypothesis that X does not Granger-cause Y at 5%
significance levels establishes directed edges in the
causality network.

Multivariate causality testing extends bivariate
procedures by conditioning on full information sets,
including all observed series. This controls for indirect
causality chains and spurious relationships driven by
common third factors. The computational intensity of
full multivariate testing necessitates dimensionality
reduction for systems with numerous time series.
Principal component analysis extracts dominant co-
movement patterns, and causality tests are applied to the
leading principal components, which represent major
market factors. Alternative dimensionality reduction
employs clustering to group similar series, with
representative series from each cluster entering
causality analyses.

Network density metrics quantify overall connectivity
by dividing the number of existing edges by the
maximum possible number of edges. For undirected
correlation networks with K nodes, the maximum
possible edges equal K(K-1)/2. Observed edge counts
divided by the maximum yield density values, ranging
from 0 (no connections) to 1 (complete graph). Directed
causality networks permit up to K(K-1) edges since
directionality doubles potential connections. Temporal
density evolution reveals whether markets become more
tightly coupled during stress periods, with increasing
density indicating contagion intensification.

3.3. Contagion Pathway Identification Metrics

Node centrality measures characterize the importance of
positions within network structures through multiple
conceptual lenses. Degree centrality counts direct
connections, identifying nodes with many immediate
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neighbors. For undirected correlation networks, degree
equals the sum of edge weights connected to each node.
Directed causality networks separate in-degree
(incoming causal arrows) from out-degree (outgoing
arrows), distinguishing information receivers from
sources. High-degree nodes serve as hubs that
concentrate  connectivity, = whereas  low-degree
peripheral nodes exhibit limited direct coupling.

Betweenness centrality quantifies how frequently nodes
appear on shortest paths connecting other node pairs.
Calculation identifies all shortest paths linking every
possible origin-destination combination, counting how
many traverse each intermediate node. Nodes with high
betweenness occupy strategic positions along
transmission chains, serving as bridges or bottlenecks.
In contagion contexts, high-betweenness nodes
constitute critical intervention points at which
disrupting connections could fragment networks and
contain shock propagation.

Eigenvector centrality extends simple degree counting
by weighting connections according to the importance
of their neighbors. A node connected to other highly
central nodes receives higher eigenvector scores than
one connected to peripheral nodes of equal count. This
recursive definition yields the principal eigenvector of
the adjacency matrix, with components representing
nodes' centrality scores. Eigenvector centrality
identifies core versus peripheral structures, revealing
which nodes occupy influential positions based on the
quality of their neighborhoods rather than mere degree.

PageRank centrality adapts Google's web page ranking
algorithm to financial networks, capturing influence
through directed edge structures. The algorithm models
random walks across networks, assigning importance
based on the stationary distributions of hypothetical
walkers. Damping parameters control the probability
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that walkers randomly jump to any node rather than
follow edges. Financial interpretation views PageRank
as capturing long-run influence propagation through
multi-step transmission chains beyond immediate
neighbors.

Contagion strength quantification employs conditional
correlation and volatility spillover indices. Conditional
correlation measures compare crisis-period correlations
with normal-period baselines; significant increases
indicate contagion. Volatility spillover indices based on
forecast error variance decomposition attribute each
variable's forecast uncertainty to innovations in other
variables. High spillover contributions from one market
to another quantify directional transmission intensity.
Time-varying spillover estimates from rolling-window
variance decompositions track the evolution of strength
as conditions transition between normal and stressed
states.

Statistical validation combines bootstrap resampling
and permutation testing. Bootstrap procedures genecrate
empirical sampling distributions for centrality measures

by repeatedly resampling observations  with
replacement. Confidence intervals derived from
bootstrap  distributions assess whether observed

differences in centrality across stress periods exceed
sampling variability. Permutation tests randomly shuffle
crisis period labels while preserving time series
structure, creating null distributions under hypotheses of
no crisis-specific effects. Observed statistics in the tails
of the distribution indicate statistically significant
structural changes during stress episodes.

4. Empirical Analysis and Findings

4.1. Network Structure Characteristics Analysis

Table 1: Network Topology Metrics Across Market Regimes

Metric Normal Period (Mean) 2008 Crisis 2020 COVID 2023 Banking Stress Average
Correlation Network Density 0.23 0.67 0.61 0.54 0.61
Causality Network Density 0.18 0.49 0.44 0.41 0.45
Average Clustering Coefficient 0.31 0.72 0.68 0.64 0.68
Average Path Length 2.84 1.57 1.68 1.79 1.68
Network Diameter 6.00 3.00 4.00 4.00 3.67
Modularity 0.42 0.19 0.23 0.26 0.23
The correlation network exhibits  substantial that crisis-specific characteristics influence the
densification during stress periods, with edge density magnitude of interconnectedness, with systemic

increasing from 0.23 under normal conditions to an
average of 0.61 across the three crisis episodes. This
165% surge in density reflects widespread correlation
amplification as market co-movements intensify under
turbulent conditions. The 2008 financial crisis
demonstrates the highest connectivity, with a density of
0.67, compared with subsequent crises' more moderate
but still elevated levels. Such density variations suggest

banking crises generating more pervasive coupling than
exogenous shocks.

Granger causality networks display parallel though less
dramatic densification patterns. Normal period causality
density of 0.18 expands to 0.45 average during stress
episodes, representing a 150% increase. The smaller
relative densification in correlation networks suggests
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that, while predictive relationships strengthen during
crises, contemporaneous associations intensify even
more rapidly. This differential behavior implies stress
periods enhance both immediate co-movement and
lagged transmission, with the former exhibiting greater
magnitude responses.

Clustering coefficients measuring local connectivity
concentration rise sharply from normal values of 0.31 to
stress averages of 0.68. High clustering indicates that
markets form tightly interconnected groups in which
connected nodes share many common neighbors.
During stress periods, these clusters coalesce into
broader structures as between-cluster connections
strengthen. The progression toward higher global
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cohesion reflects diminishing diversification benefits as
previously independent market segments become
synchronized through contagion mechanisms.

Average path lengths decline from 2.84 steps under
normal conditions to 1.68 during stress periods,
indicating reduced separation between market
segments. Shorter paths facilitate more direct and rapid
transmission of shocks across the network. The
concurrent reduction in diameter from 6 to
approximately 4 edges indicates that even the most
distant market pairs move closer together in network
space during crises. These topological shifts
characterize the transition from segmented to integrated
market structures during stress propagation.

Figure 1: Network Topology Evolution During 2008 Financial Crisis
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This figure presents a four-panel time-series
visualization of the evolution of network density,
average clustering, average path length, and modularity
from August 2008 through December 2009. The x-axis
represents calendar time at monthly intervals, while y-
axes display standardized metric values ranging from 0
to 1 for comparability. Each panel includes color
shading to differentiate the pre-crisis period (August-
September 2008, light blue), the acute crisis phase
(October 2008-March 2009, red), and the recovery
period (April-December 2009, green). Density and
clustering metrics rise sharply as the crisis unfolds in
September-October 2008, peaking in December 2008-
January 2009 before gradually declining through mid-
2009. Path length and modularity demonstrate inverse
patterns, declining rapidly during crisis onset and
recovering slowly through 2009. Vertical reference
lines mark key events, including the Lehman Brothers
bankruptcy (September 15, 2008), the TARP program

announcement (October 14, 2008), and the stress test
results publication (May 7, 2009). The visualization
employs smooth lines with 95% confidence bands
derived from bootstrap resampling, illustrating the

uncertainty around the trajectory estimates.

Modularity scores quantifying community structure
strength decrease from 0.42 during normal times to 0.23
on average across crises. Lower modularity indicates
weaker differentiation among market segments, as
formerly distinct communities merge due to increased
between-group connections. The breakdown of modular
organization reflects contagion's tendency to erase
boundaries separating market compartments. While
some residual community structure persists even during
severe stress, the magnitude of modularity decline
confirms substantial erosion of segmentation during
crisis propagation.
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Table 2: Sector-Level Correlation Network Statistics

Sector Normal Stress Degree Normal Stress Betweenness
Degree Degree Change Betweenness Betweenness Change (%)
(%)
Financials 4.20 14.70 250.0% 0.31 0.54 74.0%
Energy 3.10 9.80 216.0% 0.18 0.39 117.0%
Industrials 3.80 11.40 200.0% 0.24 0.46 92.0%
Technology 3.30 10.20 209.0% 0.21 0.41 95.0%
Consumer 3.50 10.80 209.0% 0.23 0.43 87.0%
Discretionary
Consumer Staples 2.70 8.10 200.0% 0.16 0.32 100.0%
Health Care 2.90 8.90 207.0% 0.17 0.35 106.0%
Materials 3.40 10.50 209.0% 0.22 0.42 91.0%
Utilities 2.50 7.80 212.0% 0.14 0.29 107.0%
Communication 3.10 9.60 210.0% 0.19 0.38 100.0%
Services

The sector-level decomposition reveals differential
centrality changes across industries during stress
transitions. Financial sector equities demonstrate the
largest absolute degree increases, expanding from 4.2
average connections during normal periods to 14.7
during crises. This 250% expansion reflects financials'

central role in transmitting credit market disruptions to
broader equity markets. The financial sector's elevated
stress-period betweenness of 0.54 confirms its position
as a critical transmission node bridging credit and equity
market segments.

Figure 2: Heat Map of Cross-Sector Correlation Changes
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This figure presents a 10x10 symmetric heat map
displaying changes in pairwise sector correlations from
normal to stress periods. Each matrix cell represents one
sector pair, with color intensity indicating the magnitude
of correlation. The color scale ranges from white (no
change) through yellow (+0.2 change) to dark red (+0.6
change). Row and column headers identify the ten GICS
Level 1 sectors. Diagonal elements are omitted (or set to
zero) because the focus is on cross-sector correlation
changes. The heat map reveals concentrated high-
intensity cells along the financial sector row/column,
indicating that its connections to other sectors exhibit
the largest increases in correlation. Technology-
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Consumer Discretionary, Energy-Materials, and
Industrials-Materials sector pairs also exhibit above-
average correlations, as indicated by orange-red cells.
The visualization employs hierarchical clustering to
order sectors by similarity, placing related industries
adjacent to one another and highlighting community
structures. A color bar legend appears to the right of the
matrix, with numerical labels indicating correlation
change magnitudes at regular intervals.

4.2. Risk Contagion Pathway Identification Results

Table 3: Primary Transmission Pathways - Credit to Equity Markets

Source Destination (Equity Granger Causality Correlation Transmission Lag Strength
(Credit) Sector) F-Statistic Change (Days) Ranking
IG CDS Financials 47.3%%* +0.54 1-2 1

Index
IG CDS Industrials 31.8%%* +0.47 2-3 2
Index
HY CDS Energy 28.4%%* +0.51 1-2 3
Index
IG CDS Technology 26.9%** +0.44 2-4 4
Index
Financial Financials 24 T H* +0.58 1 5
CDS
HY CDS Materials 202 3wk +0.42 2-3 6
Index
IG CDS Consumer 21.8%** +0.43 2-4 7
Index Discretionary
Financial Real Estate 19.4%%* +0.46 1-2 8
CDS
HY CDS Industrials 17.9%%%* +0.39 34 9
Index
IG CDS Materials 16.2%*%* +0.38 2-3 10
Index

Note: *** indicates significance at p < 0.001 level.

The investment-grade CDS index-to-financial-sector-
equity pathway emerges as the dominant transmission
channel, with a Granger causality F-statistic of 47.3,
indicating strong predictive power. CDS spread
widening precedes declines in financial stocks by 1-2

trading days during stress periods, suggesting potential
short-term early-warning signals for equity market
weakness. The increase in the absolute magnitude of the
correlation (reported as +0.54) indicates stronger
coupling beyond the predictive relationships.

Table 4: Reverse Transmission Pathways - Equity to Credit Markets

Source (Equity Destination Granger Correlation Transmission Lag Strength
Sector) (Credit) Causality F- Change (Days) Ranking
Statistic
Financials Financial CDS 18.7*%* +52.0% 1 1
Financials 1G CDS Index 14 3%** +48.0% 1-2 2
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Energy HY CDS Index 12.6%**
Technology 1G CDS Index 11.9%%*
Industrials 1G CDS Index 10.4%**
Materials HY CDS Index 9. 8***
Consumer 1G CDS Index 8. 7***
Discretionary
Real Estate Financial CDS 7.9%*
Health Care 1G CDS Index 6.4%*
Utilities 1G CDS Index 5.2%%*

+44.0% 2 3
+39.0% 2-3 4
+37.0% 2-3 5
+35.0% 2-3 6
+34.0% 3-4 7
+38.0% 2 8
+29.0% 3-5 9
+26.0% 4-5 10

Reverse transmission from equity to credit markets
exhibits generally weaker statistical magnitudes than
forward pathways, with F-statistics approximately 40-
60% smaller. Financial sector equity to financial CDS

represents the strongest reverse pathway at 18.7,
maintaining the tight 1-day transmission lag observed in
the forward direction.

Figure 3: Network Diagram of Major Contagion Pathways

@l Credit Markets
Equity Sectors
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Moderate (F>15)

3 Weak (F<15)

Node Size = Degree Centrality

Edge Labels: Transmission Lag (days)

This figure presents a directed network graph
visualizing the top 20 transmission pathways identified
through Granger causality analysis. Nodes represent
market segments with square shapes denoting credit
markets (colored red) and circular shapes representing
equity sectors (colored blue). Node sizes scale
proportional to total degree centrality, with larger nodes
indicating more connections. Edge thickness
corresponds to transmission strength measured by F-
statistic magnitude, with thicker arrows indicating
stronger causal relationships. Edge colors transition
from light gray for weaker pathways to dark black for
the strongest transmission channels. The layout employs
a force-directed positioning algorithm that places nodes

with higher connectivity closer together. Financial
sector nodes cluster centrally due to their high
connectivity, whereas peripheral sectors such as utilities
and consumer staples occupy peripheral positions.
Directional arrows point from causally prior to causally
subsequent variables, enabling visual identification of
predominant  transmission  directions.  Labels
accompany each node, indicating the market segment
name, while edge labels display average transmission
lag in days. A legend in the lower right corner explains
node shapes, colors, and size scaling, while a separate
edge legend shows the F-statistic magnitude ranges
corresponding to different thickness levels.
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4.3. Transmission Intensity Quantification

Table 5: Volatility Spillover Indices Across Crisis Episodes

Time Period Credit—Equity Equity—Credit Total Spillover
Spillover Spillover Connectivity Asymmetry
Normal (2010 - 23.4% 18.7% 42.1% 1.25
2019)
2008 Crisis Peak 81.2% 54.3% 135.5% 1.50
2008 Crisis 67.9% 47.8% 115.7% 1.42
Overall
2020 COVID Peak 73.6% 51.2% 124.8% 1.44
2020 COVID 62.4% 44.9% 107.3% 1.39
Overall
2023 Banking 68.9% 48.7% 117.6% 1.41
Peak
2023 Banking 58.3% 42.1% 100.4% 1.38
Overall
All Stress Periods 62.9% 44.9% 107.8% 1.40
Avg

Note: Total Connectivity is defined as the sum of directional spillovers (Credit— Equity + Equity— Credit), so values may exceed
100%.

Volatility spillover analysis based on forecast error on average, while equity markets account for 18.7% of
variance decomposition quantifies the percentage of credit market volatility. This baseline 42.1% total
each market segment's forecast uncertainty attributable connectivity reflects moderate interdependence under
to shocks in other segments. During normal periods, tranquil conditions.

credit markets explain 23.4% of equity market volatility
Table 6: Sector-Specific Transmission Strength Rankings

Equity Sector Credit—Equity Rank Equity—Credit Rank  Combined Overall
Strength Strength Score Rank
Financials 0.89 1 0.73 1 1.62 1
Energy 0.76 2 0.61 3 1.37 2
Industrials 0.72 3 0.58 4 1.30 3
Technology 0.68 4 0.54 5 1.22 4
Materials 0.65 5 0.52 6 1.17 5
Consumer 0.63 6 0.49 7 1.12 6
Discretionary
Real Estate 0.59 7 0.64 2 1.23 7
Communication 0.56 8 0.46 8 1.02 8
Services
Health Care 0.51 9 0.42 9 0.93 9
Consumer Staples 0.48 10 0.39 10 0.87 10
Utilities 044 11 036 11 0.80 11
Transmission strength rankings employ composite The financial sector demonstrates overwhelming
measures combining Granger causality F-statistics, dominance with a combined score of 1.62, substantially
correlation changes, and spillover index contributions. exceeding the second-ranked energy at 1.37.

Table 7: Dynamic Contagion Metrics by Crisis Phase
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Crisis Phase Average Network  Spillover Betweenness Centrality Peak Recovery Time
Density Index (Financials) Correlation (Days)
2008 Pre - 0.28 32.1% 0.35 0.42 -
Crisis
2008 Acute 0.71 82.7% 0.61 0.87 -
Phase
2008 0.43 51.2% 0.44 0.58 187
Recovery
2020 Pre - 0.24 28.4% 0.32 0.39 -
Crisis
2020 Acute 0.64 75.3% 0.57 0.81 -
Phase
2020 0.38 46.8% 0.41 0.53 94
Recovery
2023 Pre - 0.25 29.7% 0.33 0.41 -
Crisis
2023 Acute 0.58 69.4% 0.52 0.76 -
Phase
2023 0.34 42.1% 0.38 0.49 67
Recovery

Figure 4: Time-Varying Transmission Strength Through 2020 COVID Crisis
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This figure displays three stacked time series panels
covering January 2020 through December 2020 at a
daily frequency. The top panel plots the credit-to-equity
spillover index as a solid blue line with values on the left
y-axis ranging from 0% to 100%. The middle panel
shows the equity-to-credit spillover index as a solid red
line using the same scale. The bottom panel presents the
spillover asymmetry ratio (credit/equity) as a green line,
with a right-hand y-axis ranging from 0.5 to 2.0. All

ul
Time (2020)
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panels share the common x-axis displaying calendar
months. Vertical gray-shaded regions indicate the acute
crisis period from February 20 to April 20, 2020,
encompassing the initial market collapse and early
recovery phases. Additional vertical dashed lines
indicate key events, including the WHO pandemic
declaration (March 11), the market bottom (March 23),
and the passage of the CARES Act (March 27). The
credit-to-equity spillover surges from 25% in January to

Vol. 6(2), pp. 50-63, February 2026

[60]



Journal of Advanced Computing Systems (JACS)

a peak of 75% in mid-March, then declines gradually to
45% by June and stabilizes around 35% through year-
end. Equity-to-credit spillover displays parallel but
smaller-magnitude movements, rising from 18% to 52%
at its peak and declining to 32% by December. The
asymmetry ratio spikes above 1.5 on peak crisis days,
indicating intensification of credit market dominance,
before reverting to a baseline of 1.2 during the recovery.
Smooth lines employ 7-day moving averages to reduce
noise, while confidence bands show 95% intervals from
bootstrap estimation.

5. Conclusions and Policy Implications

5.1. Key Research Findings Summary

The empirical analysis reveals several critical insights
regarding risk contagion pathways between U.S. credit
and equity markets during stress periods. Network
topology transitions exhibit consistent patterns across
multiple crisis episodes, with correlation density
increasing by approximately 165% and causality density
increasing by 150% relative to normal periods. These
structural shifts indicate a systematic movement toward
greater market integration during stress, supporting
concerns that diversification benefits are reduced when
they are most valuable. The topology changes occur
rapidly following crisis onset, typically reaching peak
connectivity within  2-4 weeks of the initial
manifestation of stress.

Financial-sector equity emerges as the dominant
transmission channel linking credit-market disruptions
to broader equity-market weakness. The sector exhibits
the highest centrality measures across multiple network
metrics, functions as the strongest predictive pathway
for credit-to-equity transmission, and demonstrates the
tightest temporal coupling with 1-2-day lags. This
centrality reflects financial institutions' unique position:
they simultaneously participate in credit markets as
borrowers and intermediaries and serve as equity market
components. Policy frameworks emphasizing financial
sector resilience are supported by empirical evidence
documenting the sector's importance in transmission.

Transmission intensity quantification reveals that credit
markets exert a stronger influence on equity markets
than the reverse during all analyzed stress periods. The
consistent 1.38-1.50 spillover asymmetry ratios indicate
that credit market shocks explain 38-50% more equity
market volatility than equity shocks explain credit
market volatility. This directional dominance suggests
credit market developments provide leading indicators
for subsequent equity market adjustments. The
magnitudes of asymmetry increase during acute crisis
peaks, reaching maximum values around pivotal events
such as the Lehman Brothers bankruptcy and the
COVID-19 market bottoms.
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Cross-crisis comparisons identify both common
patterns and episode-specific variations in contagion
dynamics. All three analyzed stress periods share
qualitative features, including topological densification,
financial-sector centrality, and informational leadership
in credit markets. The 2008 financial crisis consistently
exhibits the highest magnitudes across metrics,
reflecting its origins in banking systems and associated
credit-market disruptions. The COVID crisis displays
the most rapid initial intensification due to its sudden
exogenous shock character, though peak magnitudes
remain below 2008 levels. The 2023 regional banking
stress exhibits more concentrated impacts on financial-
sector pathways, with narrower spillovers to other
sectors.

5.2. Policy Recommendations for Financial Stability
Monitoring

The identified contagion pathways suggest several
policy applications for financial stability monitoring
frameworks. Network density metrics calculated using
rolling 60-day windows provide real-time indicators of
trends in interconnectedness. Sustained density
increases above 0.45 for correlation networks or 0.35 for
causality networks could trigger enhanced supervisory
attention and targeted data collection. These threshold
levels correspond to the midpoints between normal and
crisis-period averages, providing early warning before
full crisis intensification occurs. Automated monitoring
systems could generate alerts when density crosses
thresholds or displays accelerating growth patterns.

Financial sector centrality measures warrant particular
surveillance attention given empirical evidence of the
sector's transmission dominance. Monthly calculations
of financial sector betweenness centrality, degree
centrality, and eigenvector centrality establish baseline
distributions during normal periods. Deviations
exceeding two standard deviations from the normal
range indicate abnormal financial sector connectivity
and warrant investigation. The specific banks or
financial institutions that drive increases in aggregate
centrality become focal points for deeper examination
of potential systemic vulnerabilities. This sector-
specific ~ monitoring complements  traditional
microprudential supervision by focusing on individual
institutions’ soundness.

Granger causality testing between credit and equity
markets provides lead-lag relationship intelligence
valuable for stress testing scenario design. The
documented 1-4-day transmission lags from credit to
equity markets suggest credit market stress indicators
offer short-term predictive content for subsequent
equity market movements. Stress-testing scenarios that
incorporate sequential shock propagation through
identified pathways yield more realistic loss estimates
than scenarios that assume simultaneous shocks across

Vol. 6(2), pp. 50-63, February 2026

[61]



Journal of Advanced Computing Systems (JACS)

all markets. The pathway-specific transmission lags
inform realistic timing assumptions for cascade
development in stress-testing narratives.

Volatility spillover indices aggregated at weekly or
monthly frequencies track overall system integration
levels. Spillover values exceeding 60% for the credit-to-
equity transmission signal were associated with elevated
contagion risk. The combination of high spillover
magnitudes with rising network density provides
stronger warning signals than either metric in isolation.
Regulatory authorities could establish graduated
response protocols, with information gathering at 50%
spillover thresholds, enhanced reporting requirements at
60%, and potential supervisory actions at 70% if
sustained over multi-week periods. These graduated
responses balance the benefits of early intervention
against the risks of false positives from temporary
spillover spikes.

The sector-specific transmission rankings inform the
allocation of risk-based supervision. Beyond the
financial sector's obvious importance, the energy
sector's second-rank  position warrants closer
monitoring of energy firms' credit conditions and equity
market performance. Credit exposures to energy
companies warrant scrutiny, particularly during
episodes of oil price volatility that affect the sector's
debt-servicing capacity. Similarly, the real estate
sector's elevated equity-to-credit transmission strength
justifies continued attention to property market
indicators as potential harbingers of credit stress.

5.3. Research Limitations and Future Directions

Several methodological limitations merit
acknowledgment. The analysis focuses exclusively on
publicly traded equity markets, potentially missing
over-the-counter credit market dynamics and private
credit transmission channels. Corporate bond markets,
bank loan markets, and private credit funds constitute
substantial credit market segments that interact with the
public equity and CDS markets analyzed here. Future
research that incorporates broader coverage of the credit
market would yield more comprehensive contagion
mapping. The technical challenge involves obtaining
high-frequency private-market data comparable to
publicly available equity and CDS data.

The network construction approaches employed here
represent two among numerous possible methodologies.
Alternative network definitions based on mutual
information, transfer entropy, or tail dependence
copulas might reveal complementary transmission
patterns. Nonlinear causality testing addresses potential
limitations of linear Granger causality in capturing
threshold effects or regime-switching behaviors.
Systematically comparing multiple network
construction methods would establish the robustness of
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the identified pathways across specification choices.
Such comparative analysis requires substantial
computational resources, given the numerous series and
rolling estimation requirements.

The identification of stress periods relies on objective
statistical thresholds but inevitably involves some
subjectivity in crisis demarcation. Alternative
identification schemes employing NBER recession
dating, CBOE stress indices, or narrative approaches
may vyield different definitions of crisis periods.
Sensitivity analysis of stress-period windows would
quantify how pathway identification and strength
estimation depend on precise crisis dating. Preliminary
analysis suggests that the main findings remain robust
to moderate variations in timing, but comprehensive
sensitivity testing awaits further investigation.

Geographic scope limitations restrict findings to U.S.
markets, though contagion inherently involves cross-
border transmission. Extending the analysis to
international markets and examining U.S. linkages with
European and Asian financial systems would address
this limitation. The methodological framework
developed here can be applied directly to international
settings, given data availability. Key questions concern
whether U.S. market dominance primarily entails
outward transmission or whether bidirectional
spillovers operate across developed markets. Emerging
market linkages to U.S. credit and equity markets
present additional research opportunities with important
policy implications.

Temporal coverage ending in December 2024 excludes
future crisis episodes that will inevitably provide
additional natural experiments. Periodic updates to this
analysis as new stress periods emerge will test whether
the identified patterns persist or evolve as market
structures change. Machine learning applications that
aggregate multi-crisis data may enable the prediction of
pathway-specific contagion intensities from crisis
characteristics. Such predictive models would enhance
real-time monitoring by forecasting likely transmission
channels based on observed initial manifestations of
stress.

References

[1]. Apostolakis, G., & Papadopoulos, A. P. (2024).
Quantifying the volatility spillover dynamics
between financial stress and US financial sectors:

Evidence from QVAR connectedness. International
Review of Financial Analysis, 95, 103661.

[2]. Battiston, S., Caldarelli, G., May, R. M., Roukny,
T., & Stiglitz, J. E. (2018). Financial networks and
stress testing: Challenges and new research avenues
for systemic risk analysis and financial stability

Vol. 6(2), pp. 50-63, February 2026

[62]



Journal of Advanced Computing Systems (JACS)

implications. Journal of Financial Stability, 35, 159-
171.

[3]. Chen, X., & Liu, Q. (2008). Financial contagion
analysis based on hybrid nonlinear mutual
prediction algorithm and fuzzy neural networks. In
2008 4th International Conference on Wireless
Communications,  Networking and  Mobile
Computing (pp. 1-4). IEEE.

[4]. Diebold, F. X., & Yilmaz, K. (2009). Measuring
financial asset return and volatility spillovers, with
application to global equity markets. Economic
Journal, 119(534), 158-171.

[5]. Elsinger, H., Lehar, A., & Summer, M. (2006).
Systemic risk monitor: A model for systemic risk
analysis and stress testing of banking systems.
Financial Stability Report, 11, 83-95.

[6]. Huang, X., Vodenska, 1., Havlin, S., & Stanley, H.
E. (2021). Systemic stress test model for shared
portfolio networks. Scientific Reports, 11, 3513.

[7]. Leung, H., Schiereck, D., & Schroeder, F. (2017).
Volatility spillovers and determinants of contagion:
Exchange rate and equity markets during crises.
Economic Modelling, 61, 169-180.

[8]. Li, W., Chen, X., Zheng, Q., & Zhang, Y. (2023).
Market volatility spillover, network diffusion, and
financial systemic risk management: Financial
modeling and empirical study. Mathematics, 11(6),
1396.

[9]. Liu, Y., & Zhang, X. (2011). Global contagion of
the U.S. financial crisis: An exploratory spatial data
analysis. In 2011 International Conference on
Management and Service Science (pp. 1-4). IEEE.

[10]. Mclver, R. P., & Kang, S. H. (2024). Analyzing
risk contagion and volatility spillover across multi-
market capital flow using EVT theory and C-vine
copula. PLoS ONE, 19(11), e0313211.

[11]. Rogers, L. C. G., & Veraart, L. A. M. (2013).
Failure and rescue in an interbank network.
Management Science, 59(4), 882-898.

[12]. Tang, Y., Xiong, J. J., Luo, Y., & Zhang, Y.
(2019). How do the global stock markets influence
one another? Evidence from finance big data and
Granger causality directed network. International
Journal of Electronic Commerce, 23(1), 85-109.

[13]. Vodenska, 1., Aoyama, H., Becker, A. P.,
Fujiwara, Y., Iyetomi, H., & Lungu, E. (2022). An
integrated macroprudential stress test of bank

liquidity and solvency. Journal of Financial
Stability, 60, 100803.

ISSN: 3066-3962

[14]. Wang, J., Chen, R., & Li, M. (2017). Study on
risk spillover effects of shadow banks on traditional
banks in China. In 2017 4th International
Conference on Industrial Economics System and
Industrial Security Engineering (pp. 1-5). IEEE.

[15]. Zhang, M., & Wu, H. (2010). Empirical
analysis on contagion effect of international
financial crisis based on VAR model. In 2010
International Conference on E-Product E-Service
and E-Entertainment (pp. 1-4). IEEE.

Vol. 6(2), pp. 50-63, February 2026

[63]



