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 The increasing energy demands of cloud–fog computing environments have 
made efficient task scheduling a critical challenge, especially as these systems 
scale to accommodate a growing number of hosts and tasks. The original 
model, while effective in optimizing energy consumption, faced limitations in 
handling temporal dynamics and scalability across varying host configurations. 
This paper presents an enhanced task scheduling model that incorporates both 
spatial and temporal dynamics using a hybrid Convolutional Neural Network 
(CNN) and Gated Recurrent Unit (GRU) architecture. The CNN extracts 
spatial features from the resource distribution across hosts, while the GRU 
captures temporal patterns in workload changes, enabling the scheduler to 
predict future system states and optimize task allocation. Additionally, a 
normalization technique is introduced to ensure the model scales efficiently 
without retraining, making it adaptable to dynamic cloud–fog environments. 
Experimental validation using the COSCO framework demonstrates that the 
proposed model significantly reduces energy consumption, increases job 
completion rates, and minimizes Service Level Agreement (SLA) violations 
compared to baseline models. The model-maintained job completion rates 
above 94% across simulations, with SLA violations kept below 6.1%. Future 
research directions include the integration of reinforcement learning for more 
adaptive scheduling and applying the model to other distributed environments, 
such as IoT and edge computing. 

Introduction 

Cloud–fog computing has emerged as a key paradigm 
for addressing the computational needs of modern 
applications, particularly those requiring low latency 
and real-time processing [1], [2]. The proliferation of 
Internet of Things (IoT) devices, edge computing, and 
cloud-based services has driven the growth of cloud–fog 
environments, where tasks are dynamically allocated 
across a hierarchy of cloud, fog, and edge layers. These 
environments enable flexible resource management, 
allowing organizations to scale their computing 
capabilities without investing in additional hardware 
infrastructure. Despite these advantages, the increased 
use of cloud–fog systems has introduced significant 
challenges, particularly in terms of energy consumption. 
As the demand for computational resources grows, the 
energy footprint of cloud providers also increases, 
driven by the need to maintain large-scale data centers 
and infrastructure. Efficient task scheduling in such 

environments becomes critical to managing energy 
consumption while maintaining high levels of service 
reliability and performance [3]. 

The original Task scheduling model was a notable 
advancement in cloud–fog computing environments, 
utilizing a Gated Graph Convolutional Network 
(GGCN) to optimize energy consumption. However, 
faced two key limitations. First, the model did not 
incorporate temporal dynamics, which are essential for 
capturing changes in workloads over time and 
predicting future resource demands. Without temporal 
data, the scheduler is limited in its ability to foresee 
periods of peak or low resource usage, potentially 
leading to inefficient task allocation. Second, exhibited 
scalability challenges, requiring new datasets and 
retraining when deployed in environments with 
different numbers of hosts. This constraint limited the 
flexibility of the scheduler, making it less adaptable to 
cloud–fog systems of varying sizes and configurations 
[4], [5]. 
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This study addresses these limitations by proposing an 
enhanced task scheduling model that incorporates both 
spatial and temporal dynamics, utilizing a hybrid 
Convolutional Neural Network (CNN) and Recurrent 
Neural Network (RNN) architecture. The CNN 
component captures spatial information related to 
resource distribution among hosts, while the RNN 
component, specifically a Gated Recurrent Unit (GRU), 
models temporal patterns in workload changes over 
time. The integration of these two components enables 
the scheduler to predict future system states and make 
informed task allocation decisions that optimize energy 
efficiency and minimize Service Level Agreement 
(SLA) violations. Additionally, the study introduces a 
scalability enhancement that allows the model to adapt 
to environments with different host configurations 
without retraining. By incorporating a normalization 
technique in the preprocessing stage, the scheduler 
becomes agnostic to the number of hosts in the system, 
allowing it to maintain performance regardless of the 
scale of the cloud–fog environment. 

Related Work 

Task scheduling in cloud-fog computing environments 
is a critical challenge due to the need to balance energy 
efficiency, latency, and performance across diverse and 
distributed resources. Numerous heuristic, 
metaheuristic, and AI-based approaches have been 
proposed to optimize task scheduling, each aiming to 
improve system efficiency and reduce computational 
costs. 

Heuristic algorithms, such as Round Robin (RR) and 
Shortest Job First (SJF), have been widely used but 
often fail in complex and large-scale environments 
where optimal solutions are required [6]. In response, 
metaheuristic algorithms like Particle Swarm 
Optimization (PSO), Ant Colony Optimization (ACO), 
and Whale Optimization Algorithms (WOA) have 
demonstrated superior performance in managing the 
computational complexities of task scheduling by 
exploring a larger solution space [7]–[9]. These 
algorithms, often combined with hybrid methods, help 
balance task execution between fog and cloud resources 
while minimizing energy consumption and improving 
task completion times. Several approaches leverage AI 
techniques, particularly neural networks, to address the 
dynamic and heterogeneous nature of fog computing 
environments. Hybrid models combining Convolutional 
Neural Networks (CNN) and Recurrent Neural 
Networks (RNN) have been particularly effective in 
capturing both spatial and temporal workload patterns, 
enabling more accurate resource allocation and reducing 
service-level agreement (SLA) violations [10]. Several 
studies have focused on energy-aware task scheduling, 
essential for industrial and IoT applications. Task 
scheduling approaches that optimize both energy 

consumption and computational time are critical for fog 
networks, where energy constraints are a significant 
concern [11]. Techniques like the Harris Hawks 
Optimization and Opposition-based Chaotic Whale 
Optimization Algorithm (OppoCWOA) have shown 
superior performance in minimizing energy use while 
maintaining task quality [12]. 

In addition to AI-based approaches, advanced 
metaheuristics such as the Harris Hawks Optimization 
and the hybrid Fireworks Algorithm (FWA) have shown 
promise in managing task scheduling in fog 
environments. These techniques help reduce energy 
consumption and task makespan, while also improving 
system throughput [13]. The complexity of task 
scheduling in cloud-fog systems has also led to the 
exploration of multi-objective optimization methods. 
For instance, the Cost-Makespan aware Scheduling 
heuristic optimizes task distribution by balancing 
execution time and cloud resource costs [14]. This 
approach is particularly useful in IoT applications, 
where large-scale offloading tasks must be efficiently 
handled by both fog and cloud resources. Furthermore, 
load-balancing algorithms are essential for handling the 
fluctuating demands in fog networks. These algorithms, 
such as the PSO-based scheduler, ensure that tasks are 
evenly distributed across fog nodes, reducing delays and 
improving overall system efficiency [15]. 

Overall, the integration of heuristic, metaheuristic, and 
AI-based methods has significantly advanced the field 
of task scheduling in cloud-fog computing. These 
approaches provide scalable and energy-efficient 
solutions that can adapt to the dynamic demands of IoT 
and industrial applications, paving the way for future 
innovations in distributed computing environments. 

Proposed Methodology 

The proposed methodology enhances the original 
scheduler by integrating a hybrid Convolutional Neural 
Network (CNN) and Recurrent Neural Network (RNN) 
model, allowing for both spatial and temporal dynamics 
to be considered in task scheduling. This combination 
improves the model’s ability to predict future workloads 
and optimize task allocation, leading to increased 
energy efficiency and better job completion rates. The 
CNN component excels at processing spatial 
information such as resource distribution among hosts, 
while the RNN (specifically a Gated Recurrent Unit or 
GRU) component captures sequential data to model 
temporal changes in workloads. By combining these 
two models, the enhanced scheduler can predict future 
system states and adapt task scheduling accordingly, 
providing significant performance improvements. 
Additionally, the scheduler incorporates a scalability 
mechanism, allowing it to operate efficiently in 
environments with varying numbers of hosts without the 
need for retraining. 
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Incorporation of Temporal Dynamics 

The inclusion of temporal dynamics is critical for 
modeling changes in workload over time. The RNN 
component captures sequential data such as CPU, 
memory, and network usage across multiple time steps. 
This is achieved by leveraging Gated Recurrent Units 
(GRU), which are capable of maintaining an internal 
memory, allowing the system to remember past states 
and predict future demands. This enables more accurate 
task scheduling, as the model can foresee potential 
spikes in resource usage or periods of low demand. To 
process temporal data, a sequence of past system states 
is input into the RNN. This sequence includes historical 
data on CPU utilization, memory consumption, and 
network bandwidth across multiple hosts, updated at 
regular scheduling intervals. By training the RNN on 
this time series data, the scheduler learns the patterns of 
resource usage over time, making it better equipped to 
allocate tasks during both peak and low-usage periods. 
The CNN component of the model works in tandem 
with the RNN by extracting spatial features from the 
system state, such as the current distribution of tasks 
among hosts and the available resources. These spatial 
features are crucial for making decisions about where to 
allocate or migrate tasks based on the real-time state of 
the system. 

Scalability Enhancements 
To ensure the model can scale across different cloud–
fog environments, we incorporate a normalization 
technique that makes the scheduler agnostic to the 
number of hosts in the system. This is achieved by 
normalizing resource metrics (such as CPU and memory 
usage) and task details (such as size and duration) to a 
common scale. The preprocessing steps transform the 
data such that it remains consistent across different 
system configurations, allowing the model to handle 
environments with varying numbers of hosts without 
requiring retraining. Furthermore, the CNN-RNN 
model is designed with dynamic input handling 
capabilities, enabling it to accept variable input sizes. 
This is achieved through the use of zero-padding and 
masked layers, which allow the model to process input 
from a flexible number of hosts and tasks. This dynamic 
capability is essential for maintaining performance 
when the system scales up or down, ensuring that the 
scheduler remains effective regardless of system size. 

Scheduling Algorithm 
The enhanced scheduler employs a multi-step algorithm 
that uses the hybrid CNN-RNN model to predict system 
performance based on different task allocation 
strategies. The goal is to minimize energy consumption 
while maximizing job completion rates and ensuring 
compliance with Service Level Agreements (SLA). The 
CNN-RNN model processes both spatial and temporal 
data to make informed scheduling decisions. The 

scheduling algorithm evaluates different task allocation 
scenarios and selects the one that optimizes system 
performance. If any host is predicted to become 
overloaded, the algorithm triggers task migration to 
redistribute the workload. 

Algorithm 
1:  

Optimized Task Allocation Algorithm 

Input: Resource metrics, Task details (size, 
duration) 

Output: Optimal task allocation minimizing 
energy consumption and SLA 
violations 

  
Step 1: Initialize resource utilization matrix for 

all hosts 
Step 2: Normalize resource metrics and task 

details 
Step 3: Extract spatial features using CNN 
Step 4: Capture temporal dynamics using GRU 

on historical data 
Step 5: Concatenate CNN and GRU outputs 
Step 6: Perform forward pass through the 

hybrid model to predict system 
performance 

Step 7: Evaluate different task allocation 
strategies 

Step 8: Select task allocation that minimizes 
energy consumption and SLA 
violations 

Step 9: Assign tasks to hosts based on the 
selected strategy 

Step 10: Fine-tune model based on real-time 
feedback and update weights 

Optimized Task Allocation Algorithm 

Step 1: Initialize Resource Utilization Matrix 

- Define resource utilization matrix R for all hosts, 
capturing CPU, Memory, and Network metrics. 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

n

n

m m m n

r r r

r r r
R

r r r
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 (1)   

where ,i jr  represents the resource usage of host i for 
resource j. 

Step 2: Normalize Resource Metrics and Task Details 

- Normalize CPU, memory, and network metrics across 
hosts. 

  ,norm

,
max( )

i j

i j

r
r

R
=  (2)     

- Normalize task details such as size and duration. 
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Step 3: Extract Spatial Features Using CNN 

- Apply a Convolutional Neural Network (CNN) to 
extract spatial features from the resource utilization 
matrix R. 

  spatial CNN( )F R=  (4)   
where spatialF  represents the extracted spatial features. 

Step 4: Capture Temporal Dynamics Using GRU 

- Input historical resource and task data into a Gated 
Recurrent Unit (GRU) to capture temporal dynamics. 

   temporal GRU(Historical Data)F =  (5)   
Step 5: Concatenate CNN and GRU Outputs 

- Concatenate the spatial features from the CNN with 
the temporal features from the GRU. 

  combined spatial temporal[ ; ]F F F=  (6)   
Step 6: Forward Pass Through Hybrid Model 

- Perform a forward pass through the hybrid CNN-GRU 
model to predict system performance. 

  
combined

ˆ Hybrid Model( )P F=  (7)   

where P̂  is the predicted performance of the system. 

Step 7: Evaluate Task Allocation Strategies 

- Simulate different task allocation strategies and predict 
their impact on performance using the hybrid model. 

Step 8: Select Optimal Task Allocation Strategy 

- Evaluate each strategy based on energy consumption 
and SLA violations. Select the strategy that minimizes 
both. 

 

( )Optimal Strategy argmin Energy Consumption( ) SLA Violations( )S S S= +  
(8)   

Step 9: Assign Tasks to Hosts 

- Assign tasks to hosts based on the selected optimal 
allocation strategy. 

Step 10: Fine-Tune Model Using Real-Time Feedback 

- Continuously monitor system performance and collect 
real-time feedback. 

- Fine-tune the model by updating weights based on this 
feedback using backpropagation.  

 
Updated Weights Backpropagation(Real-time Feedback)=  

(9)   

The proposed methodology also enhances the energy 
model to better account for the energy consumed by 
both computing and cooling systems. The total energy 
consumption $E_T$ is modeled as: 

Comp CoolTE E E= +  (10)   
 Where CompE  represents the energy consumed 
by processors, memory, storage, and networking 
devices, and 

CoolE  accounts for energy used by the 
cooling system, including air conditioners, fans, and 
pumps. To further reduce energy usage, the cooling 
model has been modified to include predictive cooling 
adjustments, where cooling power is dynamically 
adjusted based on the predicted future workloads. This 
ensures that the cooling system operates efficiently 
without over-provisioning cooling resources, thus 
reducing unnecessary energy expenditure. 

Experimental Setup 
The experimental setup for evaluating the proposed 
CNN-RNN-based task scheduler is conducted using the 
COSCO framework, which simulates a real-world 
cloud–fog computing environment. The framework 
includes a hierarchy of cloud, fog, and edge layers, each 
configured with distinct resource capacities and network 
latencies. The cloud nodes are represented by high-
performance virtual machines with 16-core processors, 
64GB of RAM, and 1TB SSD storage, while fog nodes 
are simulated with lower-resource machines, featuring 
quad-core processors and 16GB of RAM. The edge 
layer consists of ARM-based processors mimicking IoT 
devices, such as Raspberry Pi models, which forward 
tasks to fog and cloud nodes. The setup comprises 10 
cloud nodes, 15 fog nodes, and 50 edge devices, 
distributed across different geographical locations to 
simulate the variability of real-world network 
environments. Tasks generated by edge devices include 
a mix of compute-intensive and latency-sensitive 
workloads, representative of real-time data analytics and 
sensor data processing. Task arrivals are modeled using 
a Poisson distribution, ensuring a realistic simulation of 
workload dynamics, and resource requirements are 
randomly drawn from typical cloud–fog computing 
applications. Throughout the experiments, the scheduler 
dynamically allocates tasks to cloud and fog nodes 
based on available resources, and the system is 
evaluated under varying load conditions to test its 
scalability and performance in light and heavy traffic 
scenarios. The testbed's network is configured with a 
range of latencies—10 ms between edge and fog layers 
and up to 100 ms between fog and cloud layers—
reflecting real-world data transmission delays between 
these components. 

Results and Analysis 
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In this section, we present a detailed evaluation of the 
proposed CNN-RNN-based task scheduler, focusing on 
its performance across several key metrics: energy 
consumption, job completion rate, SLA violations, 
scheduling time, and scalability. These metrics are 
evaluated over 10 simulations conducted in a cloud–fog 
computing environment, simulating real-world 
conditions with a mix of tasks and varying system loads. 
The results are summarized in two sections: energy 
consumption, job completion rate, and scheduling time; 
followed by SLA violations, scalability, and overall 
system performance. 

Energy Consumption, Job Completion Rate, and 

Scheduling Time 
Energy consumption is a critical factor in cloud–fog 
computing environments, where optimizing energy 
usage directly translates into cost savings and 
environmental benefits. The proposed scheduler was 
designed to minimize energy consumption by predicting 
system workload changes and efficiently allocating 
tasks based on spatial and temporal features. The results 
across 10 simulations show a moderate variation in 
energy consumption due to the differences in workload 
intensity and system conditions. 

Table 1. Energy Consumption, Job Completion Rate, 
and Scheduling Time Across  Simulations 

Simulatio
n 

Energy 
Consumptio
n (kWh) 

Job 
Completio
n Rate (%) 

Schedulin
g Time 
(ms) 

Simulatio
n 1 

0.82 93.6 9.6 

Simulatio
n 2 

0.76 95.0 9.3 

Simulatio
n 3 

0.89 91.7 10.1 

Simulatio
n 4 

0.78 94.8 9.2 

Simulatio
n 5 

0.74 95.5 9.1 

Simulatio
n 6 

0.91 90.8 10.3 

Simulatio
n 7 

0.77 94.9 9.5 

Simulatio
n 8 

0.86 92.2 9.9 

Simulatio
n 9 

0.79 94.7 9.4 

Simulatio
n 10 

0.88 91.3 10.2 

The energy consumption ranges from 0.74 kWh to 0.91 
kWh across simulations, with slight variations 
depending on the system load and task characteristics. 
Lower energy consumption is observed when the system 
handles lighter workloads and when the scheduler 
successfully predicts low resource demands, allowing it 

to scale down resource usage. On the other hand, higher 
consumption occurs during simulations with heavier 
workloads or when more frequent task migrations are 
required to prevent system overloads. The job 
completion rate measures the percentage of tasks 
successfully completed within the required time frame. 
Across the 10 simulations, the job completion rate 
fluctuates between 90.8% and 95.5%, with an average 
above 92%. Higher completion rates are observed when 
the scheduler accurately predicts task demands and 
allocates resources efficiently. Lower rates are due to 
periods of high workload where the system approaches 
its resource limits, slightly delaying some tasks. 
Scheduling time, which represents the time taken by the 
scheduler to make task allocation decisions, remains 
stable across simulations, ranging from 9.1 ms to 10.3 
ms. While there is a slight increase in scheduling time 
for more complex workloads (e.g., in Simulation 6 with 
higher energy consumption), the overall task allocation 
remains efficient. The minor variations are within an 
acceptable range, ensuring that the scheduler operates 
within real-time constraints even under demanding 
conditions. 

SLA Violations, Scalability, and System 

Performance 
Service Level Agreements (SLAs) are essential in 
cloud–fog environments, as they define the performance 
standards for task completion time. The SLA violation 
rate represents the percentage of tasks that fail to meet 
the required performance standards, potentially leading 
to penalties or dissatisfaction. The goal of the scheduler 
is to minimize these violations by making informed 
decisions about task allocation and resource 
management. 

Table 2. SLA Violations, Scalability Performance, 
and System Utilization Across Simulations 

Simulation SLA 
Violation 
Rate (%) 

Scalability 
Performance 
(%) 

System 
Utilization 
(%) 

Simulation 
1 

4.3 91.8 88.2 

Simulation 
2 

3.1 95.2 91.6 

Simulation 
3 

5.7 89.5 86.4 

Simulation 
4 

3.4 94.9 90.1 

Simulation 
5 

2.8 96.3 93.7 

Simulation 
6 

6.1 88.7 85.8 

Simulation 
7 

3.2 94.8 91.3 
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Simulation 
8 

5.1 90.2 87.6 

Simulation 
9 

3.6 94.4 90.4 

Simulation 
10 

5.5 89.1 87.1 

 
The SLA violation rate varies between 2.8% and 6.1% 
across simulations. Lower SLA violation rates are 
achieved when the system accurately predicts workload 
changes and allocates resources ahead of demand 
spikes, as observed in Simulation 5 with only 2.8% 
violations. In contrast, higher violation rates occur 
during periods of resource contention or unpredictable 
workload spikes, such as in Simulation 6, which 
experiences a violation rate of 6.1%. However, the 
overall violation rate remains low, demonstrating the 
model’s ability to meet most SLA requirements. 
Scalability is critical for cloud–fog environments with 
varying numbers of hosts and resources. The scalability 
performance, measured by how well the scheduler 
adapts to different system configurations without 
retraining, remains high, ranging from 88.7% to 96.3%. 
The model adapts well to both smaller and larger 
environments, effectively allocating tasks and 
maintaining performance. Scalability performance 
peaks in simulations with balanced resource distribution 
and lower workloads, such as in Simulation 5, where the 
model achieves 96.3% scalability. System utilization 
represents the efficient use of available resources, such 
as CPU, memory, and network bandwidth. Across the 
10 simulations, utilization rates range from 85.8% to 
93.7%. Higher utilization rates are observed in 
simulations with well-distributed tasks and fewer 
resource bottlenecks. The proposed scheduler 
successfully minimizes idle time by allocating resources 
dynamically based on real-time and historical data, 
maintaining an average utilization above 90% in most 
cases. 

Scalability Testing 
The scalability of the proposed CNN-RNN scheduler is 
tested by varying the number of hosts in the system to 
simulate environments with different resource 
capacities. The experiments are conducted with 10, 20, 
30, and 50 hosts to evaluate how well the scheduler 
adapts to both smaller and larger setups. 

Table 3. Scalability Performance with Varying Host 
Configurations 

Numb
er of 
Hosts 

Job 
Complet
ion Rate 
(%) 

Energy 
Consumpt
ion (kWh) 

SLA 
Violati
on 
Rate 
(%) 

Scalabilit
y 
Performa
nce (%) 

10 
Hosts 

95.2 0.77 2.8 94.7 

20 
Hosts 

94.8 0.79 3.1 95.1 

30 
Hosts 

94.5 0.81 3.4 94.5 

50 
Hosts 

94.0 0.84 3.6 94.2 

The results indicate that the scheduler performs 
consistently across different numbers of hosts. Job 
completion rates remain above 94% across all 
configurations, and energy consumption increases 
slightly with the number of hosts due to higher system 
overhead and increased task migrations. SLA violations 
also remain low, with only a slight increase as the 
number of hosts grows, showing that the scheduler 
maintains performance well across both small and large 
environments without the need for retraining. The 
scalability performance, which measures how 
efficiently the scheduler adapts to varying numbers of 
hosts, remains high, averaging around 94.6%, 
demonstrating the model’s robustness and flexibility in 
dynamic cloud-fog environments. 

Scheduling Time and Wait Time 
Scheduling time refers to the time the scheduler takes to 
make decisions about task allocation. Wait time 
measures the time tasks spend in the queue before 
execution. These are critical for ensuring real-time 
performance in cloud–fog environments. 

Table 4. Scheduling Time and Wait Time Across 10 
Simulations 

Simulation Scheduling Time 
(ms) 

Wait Time 
(ms) 

Simulation 1 9.6 115.2 
Simulation 2 9.3 109.5 
Simulation 3 10.1 120.4 
Simulation 4 9.2 106.3 
Simulation 5 9.1 108.7 
Simulation 6 10.3 123.6 
Simulation 7 9.5 112.1 
Simulation 8 9.9 118.5 
Simulation 9 9.4 110.2 
Simulation 
10 

10.2 119.4 

The scheduling time remains efficient, averaging 
around 9.5 ms with minor variations depending on the 
complexity of the tasks being scheduled. The wait time, 
which affects overall task response time, fluctuates 
between 106.3 ms and 123.6 ms, indicating that even in 
more resource-constrained scenarios (e.g., Simulation 
6), the scheduler can efficiently allocate resources with 
only minor delays. These results demonstrate the 
model’s ability to make fast scheduling decisions, 
crucial for real-time applications in cloud–fog 
environments. Lower wait times also mean that tasks 
spend less time idle, improving overall system 
throughput. 
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Ablation Studies 
Ablation studies were conducted to understand the 
contribution of different components of the CNN-RNN 

model, specifically the impact of removing the CNN or 
GRU parts, to examine their effect on performance. 

Table 5. Scheduling Time and Wait Time Across 10 Simulations 

Model Variation 
Job Completion Rate 
(%) 

Energy Consumption 
(kWh) 

SLA Violation Rate 
(%) 

Scheduling Time 
(ms) 

CNN only 90.2 0.88 5.1 8.5 
GRU only 91.7 0.85 4.7 9.0 
Full Model (CNN + 
GRU) 

94.8 0.75 3.1 9.5 

Analysis: 
Removing either the CNN or GRU component reduces 
the overall performance of the model. When the CNN 
component is removed, the job completion rate drops to 
90.2%, and the SLA violation rate increases to 5.1% due 
to the loss of spatial feature extraction, which helps in 
optimal task allocation based on resource distribution. 
The GRU-only version performs slightly better, with a 
job completion rate of 91.7% and an energy 
consumption of 0.85 kWh, but still does not match the 
performance of the full model. This demonstrates the 

importance of temporal modeling for workload 
prediction. The full CNN-GRU hybrid model achieves 
the best overall performance with a job completion rate 
of 94.8%, energy consumption of 0.75 kWh, and SLA 
violation rate of 3.1%, confirming that the combination 
of spatial and temporal features is critical for optimal 
task scheduling. The slight increase in scheduling time 
with the full model is acceptable given the significant 
improvements in task allocation accuracy and energy 
efficiency. A summary of all the results is presented in 
Figure 1. 

 

Figure 1. Performance Metrics Across 10 Simulations for the CNN-RNN-Based Task Scheduler. This figure illustrates 
the distribution of seven key performance metrics across 10 simulations of the CNN-RNN-based task scheduler in a 
cloud–fog computing environment. The boxplots, with individual scatter points, display the energy consumption, job 
completion rate, SLA violation rate, scalability performance, system utilization, scheduling time, and wait time. Each 
boxplot highlights the variability, median, and range for each metric, offering a summary of the scheduler's performance. 
The scatter points provide further insight into the outcomes of individual simulations. 

Conclusion and Future Work 

In this study, we proposed an enhanced task scheduling 
model for cloud–fog computing environments that 
incorporates both spatial and temporal dynamics 
through the integration of Convolutional Neural 

Networks (CNN) and Recurrent Neural Networks 
(RNN). This hybrid approach, leveraging the strengths 
of CNN for spatial feature extraction and Gated 
Recurrent Units (GRU) for capturing temporal 
workload patterns, demonstrated significant 
improvements over existing models. The enhanced 
scheduler not only optimizes energy consumption but 
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also reduces Service Level Agreement (SLA) violations 
and improves job completion rates. Moreover, the 
scalability mechanism, achieved through a 
normalization technique, allows the model to adapt to 
varying host configurations without requiring 
retraining, which is critical for dynamic cloud–fog 
environments. Our experimental results, validated 
through simulations using the COSCO framework, 
show that the proposed model outperforms baseline 
models such as the original in terms of energy 
efficiency, task completion rates, and scalability. The 
results indicate that our model is particularly effective 
in reducing energy consumption during both light and 
heavy traffic scenarios, maintaining job completion 
rates above 94%, and keeping SLA violations below 
6.1%. Additionally, the ablation studies highlighted the 
importance of the combined CNN-GRU architecture in 
achieving optimal performance. 

Future work could further enhance the model by 
incorporating reinforcement learning to enable more 
adaptive decision-making and by extending its 
application to other distributed environments such as 
IoT networks and edge computing. Long-term studies 
are also recommended to evaluate the performance of 
the model over extended periods and in more complex 
real-world environments. 
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