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 This paper presents a deep learning-based investment risk assessment for PV 
distribution, a convolutional neural network (CNN) and monitoring process to 
improve the risk of the truth. The architecture model includes a number of 
different deletion and fusion strategies, performance parameters, 
environmental information, and simultaneous financial evaluation. The 
assessment framework employs a comprehensive risk index system covering 
technical, environmental, economic, and policy risks. Through a case study of 
15 distributed PV installations ranging from 100kW to 2MW across diverse 
geographical locations, the model demonstrates superior performance with 
technical risk prediction accuracy reaching 94.5% and financial risk prediction 
accuracy achieving 92.3%. The use of a new multi-head maintenance 
mechanism improves feature fusion efficiency, while the adaptive loss function 
optimizes model training for various risks. The system achieved a 45.8% 
reduction in business risk and a 38.5% reduction in financial risk through 
mitigation plans. The experimental results prove the model's performance 
across a wide range of operations and its ability to generate risk estimates for 
investment decisions. The proposed system provides practical solutions for 
quantitative risk assessment in distributed PV projects, leading to more 
effective risk management in renewable energy systems. 

1. Introduction 

1.1 Research Background and Significance 

The rapid development of renewable energy has become 
a global trend in response to climate change issues and 
the need for energy transition. Distributed photovoltaic 
(PV) power generation, as a clean and efficient energy 
source, plays an important role in improving energy 
standards and promoting sustainable development 
frozen[1]. According to statistics from the International 
Energy Agency (IEA), the world's PV installed capacity 
reached 720 TW in 2019, with estimates indicating that 
it will increase to 3300 TW by 2030 given the growing 
annually at 15%[2]. 

The investment in distributed PV projects shows 
distinctive characteristics compared to traditional power 
generation projects. These projects feature smaller 
individual scale, wider geographical distribution, and 

more complex influencing factors in terms of power 
generation efficiency and economic benefits. The 
Battery Energy Storage (BESS) integration with PV 
systems introduces additional economic and business 
considerations in investment decisions[3]. The 
performance of distributed PV systems is affected by 
many environmental factors, including solar radiation, 
temperature changes, and weather patterns, while 
economic conditions are affected by of energy costs, 
policy support, and trade[4]. 

The emergence of deep learning technology has brought 
new possibilities for investment risk assessment of 
distributed PV projects. Deep learning models show 
great potential in processing high-dimensional data and 
capturing non-linear relationships. The application of 
convolutional neural networks (CNN) and deep learning 
in neural networks has achieved great success in areas 
such as electronic prediction, diagnostic mistakes, and 
good work[5]. 
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1.2 Literature Review 

The research on distributed PV project investment risk 
assessment has evolved from traditional statistical 
methods to intelligent analysis approaches. Early 
studies primarily focused on financial evaluation 
metrics and qualitative risk analysis. The development 
of artificial intelligence technologies has enabled more 
comprehensive and accurate risk assessment 
methodologies. 

In the field of renewable energy investment analysis, 
researchers have explored various deep learning 
architectures. The integration of CNN models with 
satellite image analysis has improved the accuracy of 
PV system performance evaluation. Deep reinforcement 
learning algorithms have been applied to optimize 
energy storage systems and enhance economic benefits. 
Recent studies have demonstrated the effectiveness of 
attention mechanisms and hybrid neural networks in 
capturing temporal dependencies and spatial 
correlations in renewable energy data[6]. 

The application of computer vision techniques in PV 
system monitoring and assessment has made substantial 
progress. Advanced image processing and pattern 
recognition methods enable automated identification of 
PV panel conditions and installation quality. These 
technological advances contribute to more reliable risk 
assessment and decision-making processes. 

Research on BESS integration with PV systems has 
revealed new dimensions in investment risk analysis. 
The optimal sizing and operation strategies of battery 
storage significantly impact project economics. Studies 
have shown that machine learning algorithms can 
effectively optimize storage capacity and 
charging/discharging schedules, leading to improved 
investment returns[7]. 

1.3 Research Content 

This research proposes a deep learning-based 
investment risk assessment model for distributed PV 
projects. The model incorporates multiple risk factors 
and utilizes advanced neural network architectures to 
process diverse data typesError! Reference source not found.. The 
research establishes a comprehensive risk evaluation 
framework considering technical, environmental, and 
economic aspects. 

The technical architecture includes data preprocessing 
modules, feature extraction networks, and risk 
prediction components. The model employs CNN layers 
to process spatial information from PV system 
monitoring data and implements attention mechanisms 
to capture temporal patterns in performance metrics[8]. 
The integration of deep reinforcement learning enables 
dynamic optimization of risk assessment strategies. 

The research develops specialized loss functions and 
training algorithms adapted to the characteristics of 
distributed PV investment risks. The model training 
process incorporates historical performance data, 
environmental parameters, and market indicators[9]. A 
validation framework is established to evaluate the 
model's effectiveness in different operational scenarios 
and market conditions. 

The practical implementation focuses on real-world 
applications in distributed PV project evaluation. The 
system provides quantitative risk assessments and 
generates investment recommendations based on 
multiple criteria analysis[10]. The research includes case 
studies of operational PV projects to validate the 
model's accuracy and reliability in risk prediction. 

This study bridges the gap between theoretical risk 
analysis and practical investment decision-making in 
distributed PV projects. The proposed deep learning 
framework offers improved accuracy and adaptability 
compared to traditional assessment methods. The 
research contributes to the advancement of intelligent 
risk management systems in renewable energy 
investments and provides valuable tools for project 
developers and investors[11]. 

2. Construction of Investment Risk Assessment 

Index System for Distributed PV Projects 

2.1 Risk Identification and Classification 

The investment risk assessment of distributed PV 
projects encompasses multiple dimensions that require 
systematic identification and classification. Based on 
comprehensive analysis of operational data and market 
conditions, the risk factors can be categorized into 
technical risks, environmental risks, economic risks, 
and policy risks[12]. Technical risks arise from 
equipment performance, system integration, and 
operational stability. The integration of BESS 
introduces additional technical considerations related to 
battery efficiency, cycle life, and system coordination. 
Environmental risks stem from climate variations, 
geographical conditions, and natural disasters that affect 
power generation efficiency. Economic risks involve 
market fluctuations, electricity price mechanisms, and 
investment return uncertainties[13]. Policy risks are 
associated with regulatory changes, subsidy 
adjustments, and grid connection requirements. 

The risk identification process adopts a data-driven 
approach combined with expert knowledge. Through 
analysis of historical operation data from existing 
distributed PV projects, critical risk factors are extracted 
using statistical methods and machine learning 
algorithms[14]. The analysis considers both quantitative 
indicators and qualitative assessments to ensure 
comprehensive risk coverage. The classification 
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framework establishes hierarchical relationships among 
risk factors, enabling structured analysis and evaluation. 

2.2 Risk Assessment Indicator Selection 

The selection of risk assessment indicators follows 
scientific principles of objectivity, measurability, and 
relevance. Technical indicators include power 
generation efficiency, system degradation rate, 
equipment failure frequency, and maintenance 
requirements. The BESS-related indicators cover 
battery state of health, charging-discharging efficiency, 
and storage capacity utilization. Environmental 
indicators incorporate solar radiation intensity, 
temperature variations, and weather pattern statistics[15]. 
Economic indicators consist of investment cost, 
operational expenses, electricity sales revenue, and 
financial leverage ratios. Policy indicators reflect 
regulatory compliance requirements and market access 
conditions. 

The indicator selection process employs correlation 
analysis and feature importance evaluation using 
machine learning techniques. Statistical significance 
tests validate the relevance of selected indicators to 
project performance. The indicators are standardized to 
ensure comparability across different projects and 
operational conditions. Advanced data processing 
methods address missing values and outliers in indicator 
measurements. 

2.3 Index System Construction and Weight 

Determination 

The construction of the risk assessment index system 
adopts a hierarchical structure aligning with the 
identified risk categories. The system incorporates both 
static and dynamic indicators to capture time-varying 
risk characteristics. Technical indicators are structured 
to reflect system performance and operational stability. 
Environmental indicators form a comprehensive 
framework for assessing natural and geographical 
influences. Economic indicators are organized to 
evaluate financial performance and market adaptability. 
Policy indicators are arranged to monitor regulatory 
compliance and policy impact. 

Weight determination employs a hybrid approach 
combining analytical hierarchy process (AHP) and data-
driven methods. The AHP framework establishes initial 
weight assignments based on expert evaluations and 
industry experience. Machine learning algorithms 

analyze historical project data to optimize indicator 
weights through performance correlation analysis. The 
weight optimization process considers the temporal 
evolution of risk factors and their relative importance 
under different operational scenarios. 

The dynamic weight adjustment mechanism 
incorporates real-time operational data and market 
information. Neural network models process 
multidimensional input data to generate adaptive weight 
recommendations. The weight determination system 
includes validation procedures to ensure stability and 
reliability of the assessment results. Performance 
metrics evaluate the effectiveness of weight 
assignments in risk prediction accuracy. 

The index system includes specific measurement 
methods and data collection requirements for each 
indicator. Standardized procedures ensure consistent 
data quality and comparability across different projects. 
The system design accommodates technological 
advances and market changes through flexible indicator 
updates and weight adjustmentsError! Reference source not found.. 
Regular calibration processes maintain the system's 
relevance to evolving industry conditions. 

The integration of deep learning techniques enhances 
the adaptability and precision of the index system. 
Neural network models analyze indicator relationships 
and identify complex patterns in risk factors. The 
system's architecture enables continuous learning from 
new project data and market developments[16]. 
Advanced algorithms optimize the balance between 
different risk dimensions and their contributions to 
overall project assessment. 

3. Deep Learning-Based Investment Risk 

Assessment Model Design 

3.1 Model Architecture Design 

The deep learning-based investment risk assessment 
model adopts a multi-module architecture integrating 
convolutional neural networks (CNN), attention 
mechanisms, and deep reinforcement learning 
components[17]. The model structure consists of four 
main layers: input layer, feature extraction layer, feature 
fusion layer, and risk prediction layer. Table 1 presents 
the detailed configuration of each network layer. 

Table 1. Network Layer Configuration Parameters 

Layer Type Output Size Parameters Activation 

Input 256×256×3 - - 
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Conv1 128×128×64 1,728 ReLU 

Pool1 64×64×64 - - 

Conv2 64×64×128 73,856 ReLU 

Pool2 32×32×128 - - 

Dense1 1024 4,194,304 ReLU 

Dense2 512 524,288 ReLU 

Output 5 2,565 Softmax 

The model incorporates a hybrid attention mechanism to 
enhance feature learning capabilities. Table 2 details the 

attention module configuration and computational 
complexity. 

Table 2. Attention Module Specifications 

Component Dimension Computation Load Memory Usage 

Self-Attention 512 2.62×10^5 FLOPs 2.1 MB 

Cross-Attention 256 1.31×10^5 FLOPs 1.6 MB 

Channel Attention 128 6.55×10^4 FLOPs 0.8 MB 

Fig. 1. Hybrid Deep Learning Architecture for Risk Assessment 
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The architecture diagram illustrates the model's 
hierarchical structure and information flow. The input 
layer processes multi-dimensional data including 
technical parameters, environmental indicators, and 
economic metrics. The feature extraction layers employ 
parallel CNN branches with different kernel sizes to 
capture multi-scale patterns. The attention modules 
dynamically adjust feature weights based on their 
relevance to risk assessment. 

3.2 Data Preprocessing Methods 

The data preprocessing pipeline implements specialized 
techniques for handling heterogeneous input data. Table 
3 summarizes the preprocessing methods applied to 
different data types. 

Table 3. Data Preprocessing Specifications 

Data Type Method Parameters Output Format 

Time Series Z-score μ=0, σ=1 Float32 

Categorical One-hot Classes=8 Binary 

Numerical Min-Max Range=[0,1] Float32 

Missing Value MICE Iterations=5 Float32 

Fig. 2. Multi-Modal Data Preprocessing Pipeline 

 

The preprocessing pipeline visualization demonstrates 
the sequential stages of data transformation. Raw input 
data undergoes normalization, feature scaling, and 
dimension alignment. The pipeline incorporates 
automated quality control checks and data validation 
mechanisms to ensure preprocessing consistency. 

The MICE (Multiple Imputation by Chained Equations) 
algorithm handles missing values through iterative 
prediction. Advanced data augmentation techniques 
enhance the robustness of model training. A specialized 
batch normalization strategy maintains stable 
distributions across different data modalities. 

Fig. 3. Feature Distribution Analysis Framework 
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The feature distribution analysis framework visualizes 
the statistical properties of processed data. The 
framework generates multi-dimensional distribution 

plots showing the relationships between different risk 
factors. The analysis includes density estimation, 
correlation mapping, and anomaly detection 
components. 

Table 4. Data Quality Metrics 

Metric Threshold Validation Method Action 

Completeness 95% Cross-validation Imputation 

Consistency 0.85 Pearson Correlation Filtering 

Timeliness 24h Timestamp Check Update 

Accuracy 0.92 MAE Evaluation Calibration 

The preprocessing methods integrate domain 
knowledge with statistical analysis to optimize data 
quality. The implementation utilizes parallel processing 
techniques to handle large-scale datasets efficiently. 
Real-time data validation mechanisms ensure the 
continuous reliability of preprocessed features. 

3.3 Feature Extraction and Fusion Strategies 

The feature extraction process employs multiple 
specialized neural network branches to capture diverse 
risk characteristics. The architecture incorporates 
parallel CNN streams with varying receptive fields and 
dilated convolutions. Table 5 presents the feature 
extraction performance metrics across different network 
configurations. 

Table 5. Feature Extraction Performance Comparison 

Network Branch Feature Dimension Accuracy Computation Time (ms) Memory (MB) 

Shallow-CNN 128 0.891 12.5 45 
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Deep-CNN 256 0.924 28.3 86 

ResNet 512 0.943 35.7 124 

DenseNet 384 0.937 31.2 98 

The feature fusion strategy implements a multi-head 
attention mechanism to dynamically combine features 
from different branches. The fusion module calculates 
attention weights based on the relevance of features to 

specific risk types. The strategy includes residual 
connections to preserve low-level feature information 
during deep propagation. 

Fig. 4. Multi-Head Attention Feature Fusion Architecture 

 

This visualization demonstrates the architectural design 
of the multi-head attention feature fusion module. The 
diagram illustrates multiple attention heads processing 
different feature subspaces simultaneously. The fusion 
architecture includes scaled dot-product attention 
calculations, feature concatenation, and output 
projection layers. The visualization highlights the 
parallel computation paths and information flow 
between different attention heads. 

3.4 Risk Prediction Module Design 

The risk prediction module incorporates an ensemble of 
neural networks optimized for different risk categories. 
The module architecture combines deterministic 
predictions with uncertainty estimation. Table 6 details 
the prediction module components and their 
performance characteristics. 

Table 6. Risk Prediction Module Specifications 

Component Output Type Loss Function Accuracy (%)  AUC Score 

Technical Risk Binary BCE 94.2  0.923 

Economic Risk Continuous MSE 91.8  0.897 

Environmental Risk Multi-class CCE 89.5  0.884 
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Policy Risk Ordinal OC 87.3  0.862 

Fig. 5. Risk Assessment Visualization Framework 

 

The risk assessment visualization framework provides 
comprehensive insights into prediction results and 
uncertainty estimates. The framework generates multi-
dimensional risk maps showing the spatial and temporal 
distribution of different risk factors. The visualization 
includes confidence intervals, risk trend analysis, and 
interactive exploration capabilities. The system employs 
advanced plotting techniques using matplotlib and 
seaborn libraries to create publication-quality 
visualizations. 

The prediction module implements a novel loss function 
combining multiple risk objectives: 

L = α₁LBCE + α₂LMSE + α₃LCCE + α₄LOC + λR 

where α₁, α₂, α₃, α₄ are adaptive weights, λ is the 
regularization coefficient, and R represents the 
regularization term. Fig. 6 illustrates the loss 
convergence characteristics during model training. 

Fig. 6. Multi-Objective Loss Convergence Analysis 
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The loss convergence analysis visualization 
demonstrates the training dynamics of different loss 
components. The plot includes multiple curves showing 

the evolution of individual loss terms and their weighted 
combinations. The visualization incorporates 
confidence bands to represent the variability in loss 
values across different training epochs. 

Table 7. Risk Prediction Model Performance Metrics 

Metric Validation Set Test Set Time Series 

RMSE 0.087 0.092 0.105 

MAE 0.065 0.071 0.083 

R² Score 0.924 0.913 0.895 

F1 Score 0.912 0.903 0.887 

The risk prediction module incorporates uncertainty 
quantification through Bayesian neural networks and 
ensemble methods. The system generates probabilistic 
risk assessments with confidence intervals for each 
prediction. The module adapts its predictions based on 
new data through online learning mechanisms, 
maintaining model accuracy over time[18]. 

4. Model Implementation and System Development 

4.1 Dataset Construction 

The dataset construction process integrates data from 
multiple distributed PV projects across different 
geographical locations and operational conditions. The 
collected data encompasses technical parameters, 
environmental measurements, economic indicators, and 
risk event records spanning a five-year period (2019-
2023)[19][20]. Table 8 presents the dataset composition 
and statistical characteristics. 

Table 8. Dataset Statistical Characteristics 

Data Category Sample Size Time Range Update Frequency Missing Rate 

Technical Data 15,243,600 5 years 1 min 2.3% 

Environmental 7,621,800 5 years 5 min 3.1% 

Economic Data 43,800 5 years 1 hour 1.5% 

Risk Events 2,156 5 years Real-time 0.8% 

Fig. 7. Multi-dimensional Data Distribution Analysis 
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The data distribution analysis visualization presents a 
comprehensive overview of the dataset characteristics. 
The plot includes multiple subplots showing 
histograms, density estimations, and correlation patterns 
across different data dimensions. The visualization 
employs advanced statistical plotting techniques with 
customized color schemes and layout configurations. 

The data quality control process implements rigorous 
validation procedures and cleaning protocols. Table 9 
outlines the data preprocessing pipeline performance 
metrics. 

Table 9. Data Processing Pipeline Performance 

Processing Stage Throughput (samples/s) Accuracy Resource Usage 

Data Collection 1,000 98.8% 12GB RAM 

Cleaning 5,000 98.5% 8GB RAM 

Validation 10,000 98.9% 4GB RAM 

Integration 2,000 98.7% 16GB RAM 

4.2 Model Training and Optimization 

The model training process employs a distributed 
computing framework to handle large-scale data 

processing and parallel parameter optimization. The 
training strategy incorporates adaptive learning rate 
scheduling and gradient accumulation techniques. Table 
10 summarizes the training hyperparameters and 
optimization settings. 

Table 10. Training Configuration Parameters 

Parameter Value Optimization Range Final Setting 
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Batch Size 256 [64, 512] 256 

Learning Rate 0.001 [0.0001, 0.01] 0.00025 

Momentum 0.9 [0.8, 0.99] 0.95 

Weight Decay 0.0005 [0.0001, 0.001] 0.00075 

Fig. 8. Training Convergence Analysis Dashboard 

 

The training convergence visualization dashboard 
presents multiple metrics tracking the model's learning 
progress. The interactive visualization includes learning 
curves, gradient statistics, layer-wise activation 
distributions, and parameter update trajectories. The 
dashboard implements real-time monitoring capabilities 
with customizable metric displays. 

4.3 Assessment System Implementation 

The assessment system architecture integrates multiple 
functional modules through a microservices-based 
design. The implementation incorporates REST APIs 
for service communication and data exchangeError! 

Reference source not found.. Table 11 presents the system 
performance benchmarks across different deployment 
configurations. 

Table 11. System Performance Benchmarks 

Module Response Time (ms) Throughput Reliability 

Data Service 25 1000 req/s 98.99% 

Model Service 150 100 req/s 98.95% 

Web Interface 50 500 req/s 98.98% 

API Gateway 15 2000 req/s 98.99% 

Fig. 9. System Architecture and Data Flow Visualization 
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The system architecture visualization illustrates the 
interconnections between different components and 
data flow patterns. The diagram employs a hierarchical 
layout with color-coded modules and annotated 
communication pathways. The visualization includes 
performance monitoring indicators and system state 
metrics. 

4.4 Performance Testing and Analysis 

The performance testing framework evaluates system 
behavior under various operational scenarios and load 
conditions. The analysis incorporates both synthetic 
benchmarks and real-world usage patterns. Table 12 
details the comparative performance analysis results. 

Table 12. Model Performance Comparison 

Model Version Accuracy Latency GPU Usage Memory 

Base Model 89.5% 125ms 65% 4.2GB 

Optimized 92.3% 85ms 45% 3.8GB 

Distributed 93.8% 65ms 55% 5.6GB 

Ensemble 94.7% 95ms 75% 7.2GB 

The comprehensive performance analysis includes 
stress testing, reliability evaluation, and scalability 
assessment. The testing framework employs automated 
test suites and continuous monitoring tools. The 
performance metrics cover both model accuracy and 
system operational efficiency. 

The system demonstrates robust performance across 
different deployment environments and usage patterns. 
The microservices architecture enables flexible scaling 
and efficient resource utilization[21]. The continuous 
integration pipeline ensures consistent performance 
through automated testing and deployment procedures. 

5. Empirical Analysis and Application 

5.1 Case Selection and Data Collection 

The empirical validation of the risk assessment model 
incorporates case studies from multiple distributed PV 
projects across diverse geographical locations and 
operational conditions[22]. The selected cases include 15 
distributed PV installations, ranging in capacity from 
100kW to 2MW, with operational histories spanning 2-
5 years. The installations represent varied application 
scenarios including commercial rooftop systems, 
industrial installations, and community-scale 
projects[23]. The geographical distribution covers 
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different climate zones and market environments, 
ensuring comprehensive model validation. 

Table 13. Case Study Project Characteristics 

Project ID Capacity (kW) Location Operation Period Installation Type 

P01 850 Urban 4.5 years Commercial 

P02 1200 Suburban 3.8 years Industrial 

P03 450 Rural 2.3 years Community 

P04 1500 Industrial 5.0 years Utility 

The data collection process follows standardized 
protocols covering technical parameters, environmental 
conditions, economic performance, and risk events. 
Historical operational data includes power generation 
records, equipment maintenance logs, financial 
statements, and environmental monitoring data. The 
collected dataset encompasses over 10 million data 
points with high temporal resolution measurements 
across multiple parameters. 

5.2 Model Validation and Results Analysis 

The validation process evaluates model performance 
through rigorous statistical analysis and comparative 
assessment. The model demonstrates superior 
prediction accuracy across different risk categories and 
operational scenarios. The validation results indicate a 
significant improvement in risk prediction accuracy 
compared to traditional assessment methods. 

Table 14. Risk Prediction Performance Metrics 

Risk Category Accuracy Precision Recall F1-Score 

Technical 94.5% 93.8% 95.2% 94.5% 

Financial 92.3% 91.7% 92.9% 92.3% 

Environmental 91.8% 90.5% 93.1% 91.8% 

Policy 89.7% 88.9% 90.5% 89.7% 

The model performance analysis reveals robust risk 
assessment capabilities across different project scales 
and operational conditions. The deep learning approach 
demonstrates particular effectiveness in capturing 
complex interactions between multiple risk factors and 
identifying emerging risk patterns. The prediction 
accuracy maintains stability across different temporal 
scales from daily operations to long-term investment 
horizons. 

5.3 Risk Control Recommendations 

The risk control strategy development integrates model 
predictions with domain expertise to formulate practical 
risk mitigation measures. The recommendations address 
technical optimization, financial management, and 
operational improvements based on quantitative risk 
assessments. The implementation framework prioritizes 
risk control measures according to their cost-
effectiveness and practical feasibility[24]. 

The technical risk mitigation strategies focus on 
equipment maintenance optimization, system 
performance monitoring, and efficiency improvement 
measures. The financial risk management 
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recommendations include portfolio diversification 
strategies, insurance arrangements, and cash flow 
optimization approaches[25]. Environmental risk 

control measures emphasize adaptive operation 
strategies and resilience enhancement methods. 

Table 15. Risk Mitigation Strategy Effectiveness 

Strategy Type Risk Reduction Implementation Cost ROI 

Technical 45.8% Medium 2.3 

Financial 38.5% Low 3.1 

Environmental 41.2% High 1.8 

Policy 32.7% Low 2.7 

The implementation framework includes monitoring 
mechanisms to evaluate the effectiveness of risk control 
measures. The continuous feedback loop enables 
dynamic adjustment of risk management strategies 
based on actual performance data. The system provides 
automated alerts and recommendations for risk 
mitigation actions based on real-time risk assessments. 

The research findings demonstrate the practical value of 
deep learning-based risk assessment in distributed PV 
project management. The model's ability to process 
complex, multi-dimensional data and generate accurate 
risk predictions enables more effective investment 
decision-making and risk management. The integrated 
approach combining quantitative analysis with practical 
risk control measures provides a comprehensive 
framework for distributed PV project risk management. 
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